Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

PDF

Series

2021

Institution
Keyword
Publication

Articles 1 - 30 of 45

Full-Text Articles in Physics

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya Dec 2021

Evaluating Deep-Learning Models For Debris-Covered Glacier Mapping, Zhiyuan Xie, Vijayan K. Asari, Umesh K. Haritashya

Electrical and Computer Engineering Faculty Publications

In recent decades, mountain glaciers have experienced the impact of climate change in the form of accelerated glacier retreat and other glacier-related hazards such as mass wasting and glacier lake outburst floods. Since there are wide-ranging societal consequences of glacier retreat and hazards, monitoring these glaciers as accurately and repeatedly as possible is important. However, the accurate glacier boundary, especially the debriscovered glacier (DCG) boundary, which is one of the primary inputs in many glacier analyses, remains a challenge even after many years of research using conventional remote sensing methods or machine-learning methods. The GlacierNet, a deep-learning-based approach, utilized the …


Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings Dec 2021

Fabricating Nanophotonic Devices Using Nanofabrication Techniques, Scott Cummings

Student Scholar Symposium Abstracts and Posters

Nanofabrication processes are widely used to make the integrated circuits and computer chips that are ubiquitous in today’s technology. These fabrication processes can also be applied to the creation of nanophotonic devices. The ways in which we apply these fabrication techniques in the field of photonics is often constrained by the technologies used for electronics manufacturing which presents an interesting engineering challenge. These limitations include availability and cost of certain fabrication equipment and techniques required to create state-of-the-art nanophotonic devices. Through work with the University of California Irvine nano-fabrication cleanroom, we designed and fabricated various integrated photonic components including grating …


Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew Nov 2021

Single-Molecule Localization Microscopy Of 3d Orientation And Anisotropic Wobble Using A Polarized Vortex Point Spread Function, Tianben Ding, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

Within condensed matter, single fluorophores are sensitive probes of their chemical environments, but it is difficult to use their limited photon budget to image precisely their positions, 3D orientations, and rotational diffusion simultaneously. We demonstrate the polarized vortex point spread function (PSF) for measuring these parameters, including characterizing the anisotropy of a molecule’s wobble, simultaneously from a single image. Even when imaging dim emitters (∼500 photons detected), the polarized vortex PSF can obtain 12 nm localization precision, 4°–8° orientation precision, and 26° wobble precision. We use the vortex PSF to measure the emission anisotropy of fluorescent beads, the wobble dynamics …


Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Nov 2021

Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

This work presents a measurement uncertainty analysis for a system designed to simultaneously capture specular in-plane and out-of-plane bidirectional reflectance distribution function (BRDF) data with high spatial resolution by augmenting the Complete Angle Scatter Instrument (CASI®) with a charge-coupled device (CCD) camera. Various scatter flux, incident flux, scatter angle, and detector solid angle uncertainty contributions are considered and evaluated based on imperfectly known system parameters. In particular, incident flux temporal fluctuation, detector noise and non-linearity, and out-of-plane aperture misalignment considerations each require significant adjustment from original CASI® uncertainty analysis, and expressions for neutral density (ND) filter, scatter angle, and solid …


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli Oct 2021

Resampling And Super-Resolution Of Hexagonally Sampled Images Using Deep Learning, Dylan Flaute, Russell C. Hardie, Hamed Elwarfalli

Electrical and Computer Engineering Faculty Publications

Super-resolution (SR) aims to increase the resolution of imagery. Applications include security, medical imaging, and object recognition. We propose a deep learning-based SR system that takes a hexagonally sampled low-resolution image as an input and generates a rectangularly sampled SR image as an output. For training and testing, we use a realistic observation model that includes optical degradation from diffraction and sensor degradation from detector integration. Our SR approach first uses non-uniform interpolation to partially upsample the observed hexagonal imagery and convert it to a rectangular grid. We then leverage a state-of-the-art convolutional neural network (CNN) architecture designed for SR …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


A Unified Framework Of Deep Learning-Based Facial Expression Recognition System For Diversified Applications, Sanoar Hossain, Saiyed Umer, Vijayan K. Asari, Ranjeet Kumar Rout Oct 2021

A Unified Framework Of Deep Learning-Based Facial Expression Recognition System For Diversified Applications, Sanoar Hossain, Saiyed Umer, Vijayan K. Asari, Ranjeet Kumar Rout

Electrical and Computer Engineering Faculty Publications

This work proposes a facial expression recognition system for a diversified field of appli- cations. The purpose of the proposed system is to predict the type of expressions in a human face region. The implementation of the proposed method is fragmented into three components. In the first component, from the given input image, a tree-structured part model has been applied that predicts some landmark points on the input image to detect facial regions. The detected face region was normalized to its fixed size and then down-sampled to its varying sizes such that the advantages, due to the effect of multi-resolution …


Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Oct 2021

Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

In this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface. The …


Publication-Driven Research Experience For Undergraduates (Reu) Program In Optics And Photonics In The Philippines Using Circuit Analogue-Based Research Experiments, Benjamin Dingel, Clint Dominic Bennett Sep 2021

Publication-Driven Research Experience For Undergraduates (Reu) Program In Optics And Photonics In The Philippines Using Circuit Analogue-Based Research Experiments, Benjamin Dingel, Clint Dominic Bennett

Physics Faculty Publications

We summarize a unique publication-driven Research Experience for Undergraduates program in optics/photonics that uses electronic circuit analogue-based research to strengthen students’ engagement in research. At present, we have published 4 journal and conference papers.


Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak Sep 2021

Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

Accurate bidirectional reflectance distribution function (BRDF) models are essential for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-optics-based and computationally inexpensive. Fitting microfacet models to scatterometry measurements is a common yet challenging requirement that can result in a model being fit as one of several unique local minima. Final model fit accuracy is therefore largely based on the quality of the initial parameter estimate. This makes for widely varying material parameter estimates and causes inconsistent performance comparisons across microfacet models, as will be shown with synthetic data. We proposed a recursive optimization method …


Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak Sep 2021

Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak

Faculty Publications

The bidirectional reflectance distribution function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that the isotropic models maintained symmetry about ϕs  =  π, such symmetry was not maintained about the θs  =  θi axis, except for close to the specular peak. This led to the development of a data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. This algorithm was tested using high …


Re-Visiting Acoustic Sounding To Advance The Measurement Of Optical Turbulence, Steven T. Fiorino, Santasri Bose-Pillai, Kevin J. Keefer Aug 2021

Re-Visiting Acoustic Sounding To Advance The Measurement Of Optical Turbulence, Steven T. Fiorino, Santasri Bose-Pillai, Kevin J. Keefer

Faculty Publications

Optical turbulence, as determined by the widely accepted practice of profiling the temperature structure constant, C2T, via the measurement of ambient atmospheric temperature gradients, can be found to differ quite significantly when characterizing such gradients via thermal-couple differential temperature sensors as compared to doing so with acoustic probes such as those commonly used in sonic anemometry. Similar inconsistencies are observed when comparing optical turbulence strength derived via C2T as compared to those through direct optical or imaging measurements of small fluctuations of the index of refraction of air (i.e., scintillation). These irregularities are especially apparent …


Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv Aug 2021

Multi-Gaussian Random Variables For Modeling Optical Phenomena, Olga Korotkova, Milo W. Hyde Iv

Faculty Publications

A generalization of the classic Gaussian random variable to the family of multi-Gaussian (MG) random variables characterized by shape parameter M > 0, in addition to the mean and the standard deviation, is introduced. The probability density function (PDF) of the MG family members is an alternating series of Gaussian functions with suitably chosen heights and widths. In particular, for integer values of M, the series has a finite number of terms and leads to flattened profiles, while reducing to the classic Gaussian PDF for M = 1. For non-integer, positive values of M, a convergent infinite series of …


Wavelength And Power Dependence On Multilevel Behavior Of Phase Change Materials, Gary A. Sevison, Joshua A. Burrow, Haiyun Guo, Andrew M. Sarangan, Joshua R. Hendrickson, Imad Agha Aug 2021

Wavelength And Power Dependence On Multilevel Behavior Of Phase Change Materials, Gary A. Sevison, Joshua A. Burrow, Haiyun Guo, Andrew M. Sarangan, Joshua R. Hendrickson, Imad Agha

Electro-Optics and Photonics Faculty Publications

We experimentally probe the multilevel response of GeTe, Ge2Sb2Te5 (GST), and 4% tungsten-doped GST (W-GST) phase change materials (PCMs) using two wavelengths of light: 1550 nm, which is useful for telecom-applications, and near-infrared 780 nm, which is a standard wavelength for many experiments in atomic and molecular physics. We find that the materials behave differently with the excitation at the different wavelengths and identify useful applications for each material and wavelength. We discuss thickness variation in the thin films used as well and comment on the interaction of the interface between the material and the substrate with regard to the …


Zernike Integrated Partial Phase Error Reduction Algorithm, Stephen C. Cain Aug 2021

Zernike Integrated Partial Phase Error Reduction Algorithm, Stephen C. Cain

Faculty Publications

A modification to the error reduction algorithm is reported in this paper for determining the prescription of an imaging system in terms of Zernike polynomials. The technique estimates the Zernike coefficients of the optical prescription as part of a modified Gerchberg-Saxton iteration combined with a new gradient-based phase unwrapping algorithm. Zernike coefficients are updated gradually as the error reduction algorithm converges by recovering the partial pupil phase that differed from the last known pupil phase estimate. In this way the wrapped phase emerging during each iteration of the error reduction algorithm does not represent the entire wrapped phase of the …


Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler Aug 2021

Beam Formation And Vernier Steering Off Of A Rough Surface, Eric K. Nagamine, Kenneth W. Burgi, Samuel D. Butler

Faculty Publications

Wavefront shaping can refocus light after it reflects from an optically rough surface. One proposed use case of this effect is in indirect imaging; if any rough surface could be turned into an illumination source, objects out of the direct line of sight could be illuminated. In this paper, we demonstrate the superior performance of a genetic algorithm compared to other iterative feedback-based wavefront shaping algorithms in achieving reflective inverse diffusion for a focal plane system. Next, the ability to control the pointing direction of the refocused beam with high precision over a narrow angular range is demonstrated, though the …


Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini Jul 2021

Advancement In Infrared Optics Through The Exploration Of Solution Derived Arsenic Selenide (As2se3) Thin Films, Annabella Orsini

Physics and Astronomy Summer Fellows

There are great opportunities for advancement in the realm of infrared (IR) optics through the use of chalcogenide glasses (ChGs). The development of IR optics using ChGs is important for applications in search and rescue operations, firefighting efforts, medical imaging, and satellites. Instead of creating bulky, expensive, single crystal IR glasses, ChGs can be deposited as thin films by solution derived (SD) spin or dip coating. Our research takes a multidisciplinary approach to investigate ChGs thin films using physics, chemistry, optics, and materials science.


Study Of The Effects Of Cavity Mode Spacing On Mode-Hopping In Iii–V/Si Hybrid Photonic Crystal Lasers, Praveen K.J. Singaravelu, Sharon M. Butler, Robert N. Sheehan, Alexandros A. Liles, Stephen P. Hegarty, Liam O'Faolain Jul 2021

Study Of The Effects Of Cavity Mode Spacing On Mode-Hopping In Iii–V/Si Hybrid Photonic Crystal Lasers, Praveen K.J. Singaravelu, Sharon M. Butler, Robert N. Sheehan, Alexandros A. Liles, Stephen P. Hegarty, Liam O'Faolain

Cappa Publications

We present a design methodology for hybrid lasers to realise mode-hop free operation by controlling the cavity mode spacing. In this study, a compact hybrid photonic crystal laser (H-PhCL) was employed which allowed a reduction of the Fabry–Perot length of the laser cavity and eliminated the need for an active mode stabilisation mechanism in order to realise mode-hop free operation. The H-PhCL was formed by butt-coupling a reflective semiconductor optical amplifier (RSOA) with a two-dimensional silicon (Si) photonic crystal (PhC) cavity. Continuous stable single frequency operation with >40 dB side-mode suppression ratio (SMSR) of the laser was achieved for gain …


Optical Switching Performance Of Thermally Oxidized Vanadium Dioxide With An Integrated Thin Film Heater, Andrew M. Sarangan, Gamini Ariyawansa, Ilya Vitebskiy, Igor Anisimov Jul 2021

Optical Switching Performance Of Thermally Oxidized Vanadium Dioxide With An Integrated Thin Film Heater, Andrew M. Sarangan, Gamini Ariyawansa, Ilya Vitebskiy, Igor Anisimov

Electro-Optics and Photonics Faculty Publications

Optical switching performance of vanadium dioxide produced by thermal oxidation of vanadium is presented in this paper. A 100nm thick vanadium was oxidized under controlled conditions in a quartz tube furnace to produce approximately 200nm thick VO2. The substrate was appropriately coated on the front and back side to reduce reflection in the cold state, and an integrated thin film heater was fabricated to allow in-situ thermal cycling. Electrical measurements show a greater than three orders of magnitude change in resistivity during the phase transition. Optical measurements exhibit 70% transparency at 1500nm and about 15dB extinction across a wide spectral …


Estimating Turbulence Distribution Over A Heterogeneous Path Using Time‐Lapse Imagery From Dual Cameras, Benjamin Wilson, Santasri Bose-Pillai, Jack E. Mccrae, Kevin J. Keefer, Steven T. Fiorino Jul 2021

Estimating Turbulence Distribution Over A Heterogeneous Path Using Time‐Lapse Imagery From Dual Cameras, Benjamin Wilson, Santasri Bose-Pillai, Jack E. Mccrae, Kevin J. Keefer, Steven T. Fiorino

Faculty Publications

Knowledge of turbulence distribution along an experimental path can help in effective turbulence compensation and mitigation. Although scintillometers are traditionally used to measure the strength of turbulence, they provide a path-integrated measurement and have limited operational ranges. A technique to profile turbulence using time-lapse imagery of a distant target from spatially separated cameras is presented here. The method uses the turbulence induced differential motion between pairs of point features on a target, sensed at a single camera and between cameras to extract turbulence distribution along the path. The method is successfully demonstrated on a 511 m almost horizontal path going …


A Careful Reassessment Of Globular Cluster Multiple Population Radial Distributions With Sloan Digital Sky Survey And Johnson-Cousins Broadband Photometry, Willem B. Hoogendam, Jason P. Smolinski May 2021

A Careful Reassessment Of Globular Cluster Multiple Population Radial Distributions With Sloan Digital Sky Survey And Johnson-Cousins Broadband Photometry, Willem B. Hoogendam, Jason P. Smolinski

University Faculty Publications and Creative Works

Inconsistencies regarding the nature of globular cluster (GC) multiple population radial distributions is a matter for concern given their role in testing or validating cluster dynamical evolution modeling. In this study, we present a reanalysis of eight GC radial distributions using publicly available ground-based ugriz and UBVRI photometry; correcting for a systematic error identified in the literature. We detail the need for including and considering not only Kolmogorov-Smirnov (K-S) probabilities but critical K-S statistic values as well when drawing conclusions from radial distributions, as well as the impact of sample incompleteness. Revised cumulative radial distributions are presented, and the literature …


Investigating The Use Of Ultraviolet Light Emitting Diodes (Uv-Leds) For The Inactivation Of Bacteria In Powdered Food Ingredients, Laura Nyhan, Milosz Przyjalgowski, Liam O'Faolain, Máire Begley, Michael Callanan Apr 2021

Investigating The Use Of Ultraviolet Light Emitting Diodes (Uv-Leds) For The Inactivation Of Bacteria In Powdered Food Ingredients, Laura Nyhan, Milosz Przyjalgowski, Liam O'Faolain, Máire Begley, Michael Callanan

Cappa Publications

The addition of contaminated powdered spices and seasonings to finished products which do not undergo further processing represents a significant concern for food manufacturers. To reduce the incidence of bacterial contamination, seasoning ingredients should be subjected to a decontamination process. Ultraviolet light emitting diodes (UV-LEDs) have been suggested as an alternative to UV lamps for reducing the microbial load of foods, due to their increasing efficiency, robustness and decreasing cost. In this study, we investigated the efficacy of UV-LED devices for the inactivation of four bacteria (Listeria monocytogenes, Escherichia coli, Bacillus subtilis and Salmonella Typhimurium) on a plastic surface and …


Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui Apr 2021

Guest Editorial: Edge Intelligence For Beyond 5g Networks, Yan Zhang, Zhiyong Feng, Hassnaa Moustafa, Feng Ye, Usman Javaid, Chunfen Cui

Electrical and Computer Engineering Faculty Publications

Beyond fifth-generation (B5G) networks, or so-called "6G", is the next-generation wireless communications systems that will radically change how Society evolves. Edge intelligence is emerging as a new concept and has extremely high potential in addressing the new challenges in B5G networks by providing mobile edge computing and edge caching capabilities together with Artificial Intelligence (AI) to the proximity of end users. In edge intelligence empowered B5G networks, edge resources are managed by AI systems for offering powerful computational processing and massive data acquisition locally at edge networks. AI helps to obtain efficient resource scheduling strategies in a complex environment with …


Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv Apr 2021

Twisted Spatiotemporal Optical Vortex Random Fields, Milo W. Hyde Iv

Faculty Publications

We present twisted spatiotemporal optical vortex (STOV) beams, which are partially coherent light sources that possess a coherent optical vortex and a random twist coupling their space and time dimensions. These beams have controllable partial coherence and transverse orbital angular momentum (OAM), which distinguishes them from the more common spatial vortex and twisted beams (known to carry longitudinal OAM) in the literature and should ultimately make them useful in applications such as optical communications and optical tweezing. We present the mathematical analysis of twisted STOV beams, deriving the mutual coherence function and linear and angular momentum densities. We simulate the …


Achieving The Shot-Noise Limit Using Experimental Multi-Shot Digital Holography Data, Douglas E. Thornton, Cameron J. Radosevich, Samuel Horst, Mark F. Spencer Mar 2021

Achieving The Shot-Noise Limit Using Experimental Multi-Shot Digital Holography Data, Douglas E. Thornton, Cameron J. Radosevich, Samuel Horst, Mark F. Spencer

Faculty Publications

In this paper, we achieve the shot-noise limit using straightforward image-post-processing techniques with experimental multi-shot digital holography data (i.e., off-axis data composed of multiple noise and speckle realizations). First, we quantify the effects of frame subtraction (of the mean reference-only frame and the mean signal-only frame from the digital-hologram frames), which boosts the signal-to-noise ratio (SNR) of the baseline dataset with a gain of 2.4 dB. Next, we quantify the effects of frame averaging, both with and without the frame subtraction. We show that even though the frame averaging boosts the SNR by itself, the frame subtraction and the stability …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa Mar 2021

Color-Compressive Bilateral Filter And Nonlocal Means For High-Dimensional Images, Christina Karam, Kenjiro Sugimoto, Keigo Hirakawa

Electrical and Computer Engineering Faculty Publications

We propose accelerated implementations of bilateral filter (BF) and nonlocal means (NLM) called color-compressive bilateral filter (CCBF) and color-compressive nonlocal means (CCNLM). CCBF and CCNLM are random filters, whose Monte-Carlo averaged output images are identical to the output images of conventional BF and NLM, respectively. However, CCBF and CCNLM are considerably faster because the spatial processing of multiple color channels are combined into a single random filtering process. This implies that the complexity of CCBF and CCNLM is less sensitive to color dimension (e.g., hyperspectral images) relatively to other BF and NLM methods. We experimentally verified that the execution time …


Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch Mar 2021

Deep Learning For Anisoplanatic Optical Turbulence Mitigation In Long-Range Imaging, Matthew A. Hoffmire, Russell C. Hardie, Michael A. Rucci, Richard Van Hook, Barry K. Karch

Electrical and Computer Engineering Faculty Publications

We present a deep learning approach for restoring images degraded by atmospheric optical turbulence. We consider the case of terrestrial imaging over long ranges with a wide field-of-view. This produces an anisoplanatic imaging scenario where turbulence warping and blurring vary spatially across the image. The proposed turbulence mitigation (TM) method assumes that a sequence of short-exposure images is acquired. A block matching (BM) registration algorithm is applied to the observed frames for dewarping, and the resulting images are averaged. A convolutional neural network (CNN) is then employed to perform spatially adaptive restoration. We refer to the proposed TM algorithm as …