Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physics

Power-Law Schell-Model Sources, Milo W. Hyde Iv Nov 2017

Power-Law Schell-Model Sources, Milo W. Hyde Iv

Faculty Publications

A new type of Schell-model source is developed that has a spectral degree of coherence, or spatial power spectrum, which is described by a power-law function. These power-law sources generally produce cusped, or peaked far-zone spectral density patterns making them potentially useful in directed energy applications. The spectral degrees of coherence, spatial power spectra, and spatial coherence radii for power-law sources are derived and discussed. Two power-law sources are then synthesized in the laboratory using a liquid crystal spatial light modulator. The experimental spectral densities are compared to the corresponding theoretical predictions to serve as a proof of concept.


Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak Oct 2017

Use Of A Novel Infrared Wavelength-Tunable Laser Mueller-Matrix Polarimetric Scatterometer To Measure Nanostructured Optical Materials, Jason C. Vap, Stephen E. Nauyoks, Michael R. Benson, Michael A. Marciniak

Faculty Publications

Nanostructured optical materials, for example, metamaterials, have unique spectral, directional, and polarimetric properties. Samples designed and fabricated for infrared (IR) wavelengths have been characterized using broadband instruments to measure specular polarimetric transmittance or reflectance as in ellipsometry or integrated hemisphere transmittance or reflectance. We have developed a wavelength-tunable IR Mueller-matrix (Mm) polarimetric scatterometer which uses tunable external-cavity quantum-cascade lasers (EC-QCLs) to tune onto and off of the narrowband spectral resonances of nanostructured optical materials and performed full polarimeteric and directional evaluation to more fully characterize their behavior. Using a series of EC-QCLs, the instrument is tunable over 4.37-6.54 μm wavelengths …


Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood Sep 2017

Synthesis Of Non-Uniformly Correlated Partially Coherent Sources Using A Deformable Mirror, Milo W. Hyde Iv, Santasri Bose-Pillai, Ryan A. Wood

Faculty Publications

The near real-time synthesis of a non-uniformly correlated partially coherent source using a low-actuator-count deformable mirror is demonstrated. The statistical optics theory underpinning the synthesis method is reviewed. The experimental results of a non-uniformly correlated source are presented and compared to theoretical predictions. A discussion on how deformable mirror characteristics such as actuator count and pitch affect source generation is also included.


Fresnel Spatial Filtering Of Quasihomogeneous Sources For Wave Optics Simulations, Milo W. Hyde Iv, Santasri Bose-Pillai Aug 2017

Fresnel Spatial Filtering Of Quasihomogeneous Sources For Wave Optics Simulations, Milo W. Hyde Iv, Santasri Bose-Pillai

Faculty Publications

High-spatial-frequency optical fields or sources are often encountered when simulating directed energy, active imaging, or remote sensing systems and scenarios. These spatially broadband fields are a challenge in wave optics simulations because the sampling required to represent and then propagate these fields without aliasing is often impractical. To address this, two spatial filtering techniques are presented. The first, called Fresnel spatial filtering, finds a spatially band-limited source that, after propagation, produces the exact observation plane field as the broadband source over a user-specified region of interest. The second, called statistical or quasihomogeneous spatial filtering, finds a spatially band-limited source that, …


Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde Iv, Jack E. Mccrae, Glenn A. Tyler Jul 2017

Target-Based Coherent Beam Combining Of An Optical Phased Array Fed By A Broadband Laser Source, Milo W. Hyde Iv, Jack E. Mccrae, Glenn A. Tyler

Faculty Publications

The target-based phasing of an optical phased array (OPA) fed by a broadband master oscillator laser source is investigated. The specific scenario examined here considers an OPA phasing through atmospheric turbulence on a rough curved object. An analytical expression for the detected or received intensity is derived. Gleaned from this expression are the conditions under which target-based phasing is possible. A detailed OPA wave optics simulation is performed to validate the theoretical findings. Key aspects of the simulation set-up as well as the results are thoroughly discussed.


Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks May 2017

Measuring The Reflection Matrix Of A Rough Surface, Kenneth W. Burgi, Michael A. Marciniak, Mark E. Oxley, Stephen E. Nauyoks

Faculty Publications

Phase modulation methods for imaging around corners with reflectively scattered light required illumination of the occluded scene with a light source either in the scene or with direct line of sight to the scene. The RM (reflection matrix) allows control and refocusing of light after reflection, which could provide a means of illuminating an occluded scene without access or line of sight. Two optical arrangements, one focal-plane, the other an imaging system, were used to measure the RM of five different rough-surface reflectors. Intensity enhancement values of up to 24 were achieved. Surface roughness, correlation length, and slope were examined …


Analysis Of Beam Deflection Measurements In The Presence Of Linear Absorption, Manuel R. Ferdinandus, Jennifer Reed, Kent L. Averett, F. Kenneth Hopkins, Augustine Urbas May 2017

Analysis Of Beam Deflection Measurements In The Presence Of Linear Absorption, Manuel R. Ferdinandus, Jennifer Reed, Kent L. Averett, F. Kenneth Hopkins, Augustine Urbas

Faculty Publications

We develop a series of analytical approximations allowing for rapid extraction of the nonlinear parameters from beam deflection measurements. We then apply these approximations to the analysis of cadmium silicon phosphide and compare the results against previously published parameter extraction methods and find good agreement for typical experimental conditions.


Synthesizing Time-Evolving Partially-Coherent Schell-Model Sources, Noah R. Van Zandt, Milo W. Hyde Iv, Santasri Bose-Pillai, David G. Voelz, Xifeng Xiao, Steven T. Fiorino Mar 2017

Synthesizing Time-Evolving Partially-Coherent Schell-Model Sources, Noah R. Van Zandt, Milo W. Hyde Iv, Santasri Bose-Pillai, David G. Voelz, Xifeng Xiao, Steven T. Fiorino

Faculty Publications

Time-evolving simulation of sources with partial spatial and temporal coherence is sometimes instructive or necessary to explain optical coherence effects. Yet, existing time-evolving synthesis techniques often require prohibitive amounts of computer memory. This paper discusses three methods for the synthesis of continuous or pulsed time-evolving sources with nearly arbitrary spatial and temporal coherence. One method greatly reduces computer memory requirements, making this type of synthesis more practical. The utility of all three methods is demonstrated via a modified form of Young's experiment. Numerical simulation and laboratory results for time-averaged irradiance are presented and compared with theory to validate the synthesis …