Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

Magnetohydrodynamic Modeling Of Three Van Allen Probes Storms In 2012 And 2013, J. Paral, M. K. Hudson, B. T. Kress, M. J. Wiltberger Aug 2015

Magnetohydrodynamic Modeling Of Three Van Allen Probes Storms In 2012 And 2013, J. Paral, M. K. Hudson, B. T. Kress, M. J. Wiltberger

Dartmouth Scholarship

Coronal mass ejection (CME)-shock compression of the dayside magnetopause has been observed to cause both prompt enhancement of radiation belt electron flux due to inward radial transport of electrons conserving their first adiabatic invariant and prompt losses which at times entirely eliminate the outer zone. Recent numerical studies suggest that enhanced ultra-low frequency (ULF) wave activity is necessary to explain electron losses deeper inside the magnetosphere than magnetopause incursion following CME-shock arrival. A combination of radial transport and magnetopause shadowing can account for losses observed at radial distances into L=4.5, well within the computed magnetopause location. We compare ULF wave …


Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd Jun 2015

Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd

Dartmouth Scholarship

During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and …