Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii Sep 2022

Kinetic Modeling Of Ionospheric Outflows Observed By The Visions-1 Sounding Rocket, Robert M. Albarran Ii

Doctoral Dissertations and Master's Theses

Plasma escape from the high-latitude ionosphere (ion outflow) serves as a significant source of heavy plasma to magnetospheric plasma sheet and ring current regions. Outflows alter mass density and reconnection rates, hence global responses of the magnetosphere. The VISIONS-1 (VISualizing Ion Outflow via Neutral atom imaging during a Substorm) sounding rocket was launched on Feb. 7, 2013 at 8:21 UTC from Poker Flat, Alaska, into an auroral substorm with the objective of identifying the drivers and dynamics of nightside ion outflow at altitudes where it is initiated, below 1000 km. Energetic ion data from the VISIONS-1 polar cap boundary crossing …


Acoustic/Gravity Wave Phenomena In Wide-Field Imaging: From Data Analysis To A Modeling Framework For Observability In The Mlt Region And Beyond, Jaime Aguilar Guerrero Nov 2021

Acoustic/Gravity Wave Phenomena In Wide-Field Imaging: From Data Analysis To A Modeling Framework For Observability In The Mlt Region And Beyond, Jaime Aguilar Guerrero

Doctoral Dissertations and Master's Theses

Acoustic waves, gravity waves, and larger-scale tidal and planetary waves are significant drivers of the atmosphere’s dynamics and of the local and global circulation that have direct and indirect impacts on our weather and climate. Their measurements and characterization are fundamental challenges in Aeronomy that require a wide range of instrumentation with distinct operational principles. Most measurements share the common features of integrating optical emissions or effects on radio waves through deep layers of the atmosphere. The geometry of these integrations create line-of-sight effects that must be understood, described, and accounted for to properly present the measured data in traditional …


An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison Dec 2019

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison

Publications

An investigation on the propagation of underground-explosion-generated infrasonic waves is carried out via numerical simulations of the equations of fluid dynamics. More specifically, the continuity, momentum, and energy conservation equations are solved along with the Herzfeld-Rice equations in order to take into account the effects of vibrational relaxation phenomena. The radiation of acoustic energy by the ground motion caused by underground explosions is initiated by enforcing the equality, at ground level, between the component of the air velocity normal to the Earth's surface and the normal velocity of the ground layer. The velocity of the ground layer is defined semi-empirically …


On Atmospheric Lapse Rates, Nihad E. Daidzic Jan 2019

On Atmospheric Lapse Rates, Nihad E. Daidzic

International Journal of Aviation, Aeronautics, and Aerospace

We have derived and summarized and most important atmospheric temperature lapse rates. ALRs essentially govern vertical atmospheric air stability and creation of some cloud types. The sensitivity analysis of various atmospheric lapse rates and their dependence on actual ideal-gas air properties and gravitational attraction was conducted for the first time to the best of our knowledge. SALR, which has DALR as the upper asymptote, showed steepest decrease at around 9 degrees Celsius then flattening out and apparently approaching another asymptotic solution which has not been investigated as it falls outside of the terrestrial temperature range. ISA lapse rates are adopted …


Error Analysis Of Multi-Needle Langmuir Probe Measurement Technique, Aroh Barjatya, William Merritt Apr 2018

Error Analysis Of Multi-Needle Langmuir Probe Measurement Technique, Aroh Barjatya, William Merritt

Publications

Multi-needle Langmuir probe is a fairly new instrument technique that has been flown on several recent sounding rockets and is slated to fly on a subset of QB50 CubeSat constellation. This paper takes a fundamental look into the data analysis procedures used for this instrument to derive absolute electron density. Our calculations suggest that while the technique remains promising, the current data analysis procedures could easily result in errors of 50% or more. We present a simple data analysis adjustment that can reduce errors by at least a factor of five in typical operation.


Cirrus Cloud Microphysics Over Darwin, Australia, Dorothea Ivanova, Matthew Johnson Apr 2017

Cirrus Cloud Microphysics Over Darwin, Australia, Dorothea Ivanova, Matthew Johnson

Publications

Ice clouds, crucial to the understanding of both short - and long - term climate trends, are poorly represented in global climate models (GCMs). Cirrus clouds, one of the largest uncertainties in the global radiation budget, have been inadequately studied at low latitudes. Parameterizations exist for mid - latitude and tropical cirrus ( Ivanova et al. 2001; McFarquhar et al. 1997). Due to climate sensitivity in the GCM with respect to cloud input, without robust parameterizations of cirrus clouds, the GCM is inaccurate over most output fields, including radiative forcing, temperature, albedo, and heat flux (Yao and Del Genio 1999). …


Dynamical Processes Of Gravity Waves Propagation And Dissipation, And Statistical Characteristics Of Their Momentum Flux In The Mesosphere And Lower Thermosphere, Bing Cao Jan 2017

Dynamical Processes Of Gravity Waves Propagation And Dissipation, And Statistical Characteristics Of Their Momentum Flux In The Mesosphere And Lower Thermosphere, Bing Cao

Doctoral Dissertations and Master's Theses

The mesosphere and lower thermosphere (MLT) (⇠80–110 km) is dominated by abundant atmospheric waves, of which gravity waves are one of the least understood due to large varieties in wave characteristics as well as potential sources. Gravity waves play an important role in the atmosphere by influencing the thermal balance and helping to drive the global circulation. But due to their sub-grid scale, the effects of gravity waves in General Circulation Models (GCMs) are mostly parameterized. The investigations of gravity waves in this dissertation are from two perspectives: the dynamical processes of gravity wave propagation and dissipation in the MLT …


Infrasound Propagation In Terrestrial Planetary Atmospheres, Lynsey B. Schroeder Dec 2016

Infrasound Propagation In Terrestrial Planetary Atmospheres, Lynsey B. Schroeder

Doctoral Dissertations and Master's Theses

Acoustic waves in the infrasonic frequency range, that is below 10 Hertz, have been observed to propagate to high altitudes in Earth's atmosphere. These waves have many sources, both natural and artificial, such as seismic events, convective storm systems, and nuclear explosions. Here, we seek to better understand the characteristics of atmospheric infrasound- below 0.1 Hz in particular- so as to improve the ability to detect their presence and sources. It is well-known that ambient attributes of an atmosphere, such as temperature, density, and composition, directly affect the propagation and growth of waves, and therefore it is likely that these …


Global Optimized Isothermal And Nonlinear Models Of Earth’S Standard Atmosphere, Nihad E. Daidzic, Ph.D., Aug 2015

Global Optimized Isothermal And Nonlinear Models Of Earth’S Standard Atmosphere, Nihad E. Daidzic, Ph.D.,

International Journal of Aviation, Aeronautics, and Aerospace

Both, a global isothermal temperature model and a nonlinear quadratic temperature model of the ISA was developed and presented here. Constrained optimization techniques in conjunction with the least-square-root approximations were used to design best-fit isothermal models for ISA pressure and density changes up to 47 geopotential km for NLPAM, and 86 orthometric km for ISOAM respectively. The mass of the dry atmosphere and the relevant fractional-mass scale heights have been computed utilizing the very accurate eight-point Gauss-Legendre numerical quadrature for both ISOAM and NLPAM. Both, the ISOAM and the NLPAM represent viable alternatives to ISA in many practical applications and …


Efficient General Computational Method For Estimation Of Standard Atmosphere Parameters, Nihad E. Daidzic Ph.D., Sc.D. Mar 2015

Efficient General Computational Method For Estimation Of Standard Atmosphere Parameters, Nihad E. Daidzic Ph.D., Sc.D.

International Journal of Aviation, Aeronautics, and Aerospace

Knowledge of standard air temperature, pressure, density, speed of sound, and viscosity as a function of altitude is essential information in aircraft design, performance testing, pressure altimeter calibration, and several other aeronautical engineering and aviation science applications. A new efficient computational method for rapid calculations of standard atmospheric parameters up to 86 orthometric km is presented. Additionally, mass and weight of each standard atmospheric layer were calculated using a numerical integration method. The sum of all fractional masses and weights represents the total mass and weight of Earth’s atmosphere. The results obtained here agree well with measurements and models of …


Ion-Cyclotron Resonance Heating Of O+ In The Topside Ionosphere And Mapping Outflows To The Magnetosphere, Anthony W. Pritchard Sep 2014

Ion-Cyclotron Resonance Heating Of O+ In The Topside Ionosphere And Mapping Outflows To The Magnetosphere, Anthony W. Pritchard

Doctoral Dissertations and Master's Theses

This thesis considers the heavy ion dynamics due to ion-cyclotron resonance energization processes that take place in the turbulent region of the Earth’s topside, high latitude ionosphere. We simulate the impact of this transverse heating process upon energies and velocity distribution functions of outflowing oxygen ions (O+) in the approximate altitude range of 800 km to 15,000 km. To do so most effectively, we use a single particle tracing model that precisely reproduces the small-scale wave-particle interaction of broadband extremely low frequency (BBELF) waves with the ions’ cyclotron motions, leading to the upward acceleration of ions in type-II ion outflows …


A 3-D Model Of The Auroral Ionosphere, Yishi Lee Jun 2013

A 3-D Model Of The Auroral Ionosphere, Yishi Lee

Doctoral Dissertations and Master's Theses

A new 3-D model of the high latitude ionosphere is developed to study the coupling of the ionosphere with the magnetosphere and neutral atmosphere. The model consists of equations describing conservations of mass, momentum and energy for the six ionospheric constituents (O+, NO+, N+2 , O+2 , N+ and e-) and an electrostatic potential equation. This 3-D model is used to examine interrelated processes of ion heating, plasma structuring due to perpendicular transport, ion upflow, molecular ion generation, and neutral wave forcing. It is first validated by comparisons with a 2-D model, which uses similar mathematical and numerical approaches, and …


Particle‐In‐Cell Simulation Of Incoherent Scatter Radar Spectral Distortions Related To Beam‐Plasma Interactions In The Auroral Ionosphere, M. A. Diaz, M. Oppenheim, J. L. Semeter, M. Zettergren Jul 2011

Particle‐In‐Cell Simulation Of Incoherent Scatter Radar Spectral Distortions Related To Beam‐Plasma Interactions In The Auroral Ionosphere, M. A. Diaz, M. Oppenheim, J. L. Semeter, M. Zettergren

Publications

An electrostatic parallel particle‐in‐cell (EPPIC) code that allows for particle beam injections and multiple boundary conditions is used to investigate the beam‐plasma interaction and its manifestations in the incoherent scatter (IS) spectrum. Specifically, the code is used to investigate anomalous enhancements in the ion acoustic line through the destabilization of the plasma by injection (or precipitation) of low‐energy electron beams. This enhancement of the ion acoustic line is a form of IS distortion commonly observed in the vicinity of auroral arcs called the naturally enhanced ion‐acoustic line (NEIAL). Simulations confirm the parametric decay of Langmuir waves as a plausible mechanism, …


Fabry-Perot Observations Of Midlatitude Neutral Winds And Atmospheric Gravity Wave Activity, Marjory Anne Katon Jun 2011

Fabry-Perot Observations Of Midlatitude Neutral Winds And Atmospheric Gravity Wave Activity, Marjory Anne Katon

Doctoral Dissertations and Master's Theses

The mesosphere and lower thermosphere displays a wide range of dynamical phenomena resulting in a complex and variable regions. Governed primarily by fluid dynamics, the motion of the upper atmosphere is modulated by a number of atmospheric waves propagating upward from various sources in the lower atmosphere. Among these are atmospheric gravity waves which have been recognized as a major source of momentum and energy in the mesosphere and lower thermosphere as well as a major factor in the dynamic coupling between the troposphere and lower thermosphere. A Fabry-Perot interferometer possessed by the Space Physics Research Laboratory at the Embry-Riddle …


Magnetic Coupling Between A “Hot Jupiter” Extrasolar Planet And Its Pre-Main-Sequence Central Star, Brooke E. Alarcon Apr 2006

Magnetic Coupling Between A “Hot Jupiter” Extrasolar Planet And Its Pre-Main-Sequence Central Star, Brooke E. Alarcon

Master's Theses - Daytona Beach

In order to understand the short-period pile-up of extrasolar planets, the magnetic torque of a pre-main-sequence central star on a single orbiting "hot Jupiter" planet is calculated. The star's magnetic field is modeled as a dipole magnetic field. The time-dependant stellar radius is calculated for four different stellar mass sizes; 2Msum \.5Msum \Msum and 0.5Msurt. The minimum planetary ionization for the giant gas planet to be nearly frozen to the magnetic field lines is calculated. The changing angular momentum of an orbiting body was balanced with the magnetic torque of the central star to provide …


Asymptotic Accuracy Of Geoacoustic Inversions, Michele Zanolin, Ian Ingram, Aaron Thode, Nicholas C. Makris Oct 2004

Asymptotic Accuracy Of Geoacoustic Inversions, Michele Zanolin, Ian Ingram, Aaron Thode, Nicholas C. Makris

Publications

Criteria necessary to accurately estimate a set of unknown geoacoustic parameters from remote acoustic measurements are developed in order to aid the design of geoacoustic experiments. The approach is to have estimation error fall within a specified design threshold by adjusting controllable quantities such as experimental sample size or signal-to-noise ratio (SNR). This is done by computing conditions on sample size and SNR necessary for any estimate to have a variance that (1) asymptotically attains the Cramer–Rao lower bound (CRLB) and (2) has a CRLB that falls within the specified design error threshold. Applications to narrow band deterministic signals received …