Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

PDF

Series

Ionosphere

Articles 1 - 4 of 4

Full-Text Articles in Physics

Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd Jun 2015

Gps Phase Scintillation At High Latitudes During Geomagnetic Storms Of 7–17 March 2012 – Part 1: The North American Sector, P. Prikryl, R. Ghoddousi-Fard, E. G. Thomas, J. M. Ruohoniemi, S. G. Shepherd

Dartmouth Scholarship

During the ascending phase of solar cycle 24, a series of interplanetary coronal mass ejections (ICMEs) in the period 7–17 March 2012 caused geomagnetic storms that strongly affected high-latitude ionosphere in the Northern and Southern Hemisphere. GPS phase scintillation was observed at northern and southern high latitudes by arrays of GPS ionospheric scintillation and TEC monitors (GISTMs) and geodetic-quality GPS receivers sampling at 1 Hz. Mapped as a function of magnetic latitude and magnetic local time, regions of enhanced scintillation are identified in the context of coupling processes between the solar wind and the magnetosphere–ionosphere system. Large southward IMF and …


Ensemble Modeling With Data Assimilation Models: A New Strategy For Space Weather Specifications, Forecasts, And Science, Robert W. Schunk, Ludger Scherliess, V. Eccles, Larry Gardner, Jan Josef Sojka, L. Zhu, X. Pi, A. J. Mannucci, B. D. Wilson, A. Komjathy, C, Wang, G. Rosen Mar 2014

Ensemble Modeling With Data Assimilation Models: A New Strategy For Space Weather Specifications, Forecasts, And Science, Robert W. Schunk, Ludger Scherliess, V. Eccles, Larry Gardner, Jan Josef Sojka, L. Zhu, X. Pi, A. J. Mannucci, B. D. Wilson, A. Komjathy, C, Wang, G. Rosen

All Physics Faculty Publications

The Earth’s Ionosphere-Thermosphere-Electrodynamics (I-T-E) system varies markedly on a range of spatial and temporal scales and these variations have adverse effects on human operations and systems, including high-frequency communications, over-the-horizon radars, and survey and navigation systems that use Global Positioning System (GPS) satellites. Consequently, there is a need to elucidate the underlying physical pro- cesses that lead to space weather disturbances and to both mitigate and forecast near-Earth space weather.


Resolving Ionospheric E-Region Modeling Challenges: The Solar Photon Flux Dependence, Joseph B. Jensen, Jan J. Sojka, Michael David, Kent Tobiska, Robert W. Schunk, Tom Woods, Frank Eparvier Apr 2013

Resolving Ionospheric E-Region Modeling Challenges: The Solar Photon Flux Dependence, Joseph B. Jensen, Jan J. Sojka, Michael David, Kent Tobiska, Robert W. Schunk, Tom Woods, Frank Eparvier

Browse All Undergraduate research

The EVE instrument of the NASA Solar Dynamics Observatory (SDO) provides for the first time EUV and XUV measurements of the solar irradiance that adequately define the major source of ionization of the atmosphere. In our study we modeled the E-region of the ionosphere and analyzed how it is affected by the solar irradiance data obtained by EVE and contrast this with the S2000 Solar Irradiance model, used previously. The ionosphere has two major layers, the E-layer at 100 km, and the F-layer at 300 km. The difference in solar irradiances are small except at some wavelength bands, it is …


Resolving Ionospheric E-Region Modeling Challenges: The Solar Photon Flux Dependence, Joseph B. Jensen, Jan J. Sojka, Michael David, Kent Tobiska, Robert W. Schunk, Tom Woods, Frank Eparvier Apr 2013

Resolving Ionospheric E-Region Modeling Challenges: The Solar Photon Flux Dependence, Joseph B. Jensen, Jan J. Sojka, Michael David, Kent Tobiska, Robert W. Schunk, Tom Woods, Frank Eparvier

Student Showcase

No abstract provided.