Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Scientific Computing

Physics Faculty Research & Creative Works

Series

2014

Electron-Electron Interactions

Articles 1 - 2 of 2

Full-Text Articles in Physics

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison Dec 2014

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and …


Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison Jul 2014

Theoretical And Experimental Investigation Of (E, 2e) Ionization Of Argon 3p In Asymmetric Kinematics At Intermediate Energy, Sadek Amami, Melike Ulu, Zehra Nur Ozer, Murat Yavuz, Suay Kazgoz, Mevlut Dogan, Oleg Zatsarinny, Klaus Bartschat, Don H. Madison

Physics Faculty Research & Creative Works

The field of electron-impact ionization of atoms, or (e, 2e), has provided significant detailed information about the physics of collisions. For ionization of hydrogen and helium, essentially exact numerical methods have been developed which can correctly predict what will happen. For larger atoms, we do not have theories of comparable accuracy. Considerable attention has been given to ionization of inert gases and, of the inert gases, argon seems to be the most difficult target for theory. There have been several studies comparing experiment and perturbative theoretical approaches over the last few decades, and generally qualitative but not quantitative agreement is …