Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

2018

Institution
Keyword
Publication
Publication Type

Articles 1 - 13 of 13

Full-Text Articles in Physics

Numerical Treatment For The Flow Of Casson Fluid And Heat Transfer Model Over An Unsteady Stretching Surface In The Presence Of Internal Heat Generation/Absorption And Thermal Radiation, Mohammed M. Babatin Dec 2018

Numerical Treatment For The Flow Of Casson Fluid And Heat Transfer Model Over An Unsteady Stretching Surface In The Presence Of Internal Heat Generation/Absorption And Thermal Radiation, Mohammed M. Babatin

Applications and Applied Mathematics: An International Journal (AAM)

Several important industrial and engineering problems are very difficult to solve analytically since they are high nonlinear. The Chebyshev spectral collocation method possesses an ability to predict the solution behavior for a system of high nonlinear ordinary differential equations. This method which is based on differentiated Chebyshev polynomials is introduced to obtain an approximate solution to the system of ordinary differential equations which physically describe the flow and heat transfer problem of an unsteady Casson fluid model taking into consideration both heat generation and radiation effects in the temperature equation. Based on the spectral collocation method, the obtained solution is …


Quasi-Linearization Method With Rational Legendre Collocation Method For Solving Mhd Flow Over A Stretching Sheet With Variable Thickness And Slip Velocity Which Embedded In A Porous Medium, M. M. Khader Dec 2018

Quasi-Linearization Method With Rational Legendre Collocation Method For Solving Mhd Flow Over A Stretching Sheet With Variable Thickness And Slip Velocity Which Embedded In A Porous Medium, M. M. Khader

Applications and Applied Mathematics: An International Journal (AAM)

The quasi-linearization method (QLM) and the rational Legendre functions are introduced here to present the numerical solution for the Newtonian fluid flow past an impermeable stretching sheet which embedded in a porous medium with a power-law surface velocity, variable thickness and slip velocity. Firstly, due to the high nonlinearity which yielded from the ordinary differential equation which describes the proposed physical problem, we construct a sequence of linear ODEs by using the QLM, hence the resulted equations become a system of linear algebraic equations. The comparison with the available results in the literature review proves that the obtained results via …


Numerical Studies For Mhd Flow And Gradient Heat Transport Past A Stretching Sheet With Radiation And Heat Production Via Dtm, Khadijah M. Abualnaja Dec 2018

Numerical Studies For Mhd Flow And Gradient Heat Transport Past A Stretching Sheet With Radiation And Heat Production Via Dtm, Khadijah M. Abualnaja

Applications and Applied Mathematics: An International Journal (AAM)

This paper presents a numerically study for the effect of the internal heat generation, magnetic field and thermal radiation effects on the flow and gradient heat transfer of a Newtonian fluid over a stretching sheet. By using a similarity transformation, the governing PDEs can be transformed into a coupled non-linear system of ODEs with variable coefficients. Numerical solutions for these equations subject to appropriate boundary conditions are obtained by using the differential transformation method (DTM). The effects of various physical parameters such as viscosity parameter, the suction parameter, the radiation parameter, internal heat generation or absorption parameter and the Prandtl …


Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov Nov 2018

Two Applications Of High Order Methods: Wave Propagation And Accelerator Physics, Oleksii Beznosov

Shared Knowledge Conference

Numerical simulations of partial differential equations (PDE) are used to predict the behavior of complex physics phenomena when the real life experiments are expensive. Discretization of a PDE is the representation of the continuous problem as a discrete problem that can be solved on a computer. The discretization always introduces a certain inaccuracy caused by the numerical approximation. By increasing the computational cost of the numerical algorithm the solution can be computed more accurately. In the theory of numerical analysis this fact is called the convergence of the numerical algorithm. The idea behind high order methods is to improve the …


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …


Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli May 2018

Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli

Publications

The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock–Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock–Taussig shunt. The degree of distal arch obstruction and position of particle origin influence …


Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven May 2018

Risk Assessment Of Dropped Cylindrical Objects In Offshore Operations, Adelina Steven

University of New Orleans Theses and Dissertations

Dropped object are defined as any object that fall under its own weight from a previously static position or fell due to an applied force from equipment or a moving object. It is among the top ten causes of injuries and fatality in oil and gas industry. To solve this problem, several in-house tools and guidelines is developed over time to assess the risk of dropped objects on the sub-sea structures. This thesis focuses on compiling and comparing those methods in hope to improve the recommended practices available in the market. A simple modification is done on the in-house tools …


Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer May 2018

Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer

Publications

A simple unified Godunov-type upwind approach that does not need Riemann solvers for the flux calculation is developed for the finite volume discrete Boltzmann method (FVDBM) on an unstructured cell-centered triangular mesh. With piecewise-constant (PC), piecewise-linear (PL) and piecewise-parabolic (PP) reconstructions, three Godunov-type upwind flux schemes with different orders of accuracy are subsequently derived. After developing both a semi-implicit time marching scheme tailored for the developed flux schemes, and a versatile boundary treatment that is compatible with all of the flux schemes presented in this paper, numerical tests are conducted on spatial accuracy for several single-phase flow problems. Four major …


Power Corrections To Tmd Factorization For Z-Boson Production, I. Balitsky, A. Tatasov May 2018

Power Corrections To Tmd Factorization For Z-Boson Production, I. Balitsky, A. Tatasov

Physics Faculty Publications

A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this paper we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in Nc power corrections are expressed in …


Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi Feb 2018

Numerical Studies Of Electrohydrodynamic Flow Induced By Corona And Dielectric Barrier Discharges, Chaoao Shi

Electronic Thesis and Dissertation Repository

Electrohyrodynamic (EHD) flow produced by gas discharges allows the control of airflow through electrostatic forces. Various promising applications of EHD can be considered, but this requires a deeper understanding of the physical mechanisms involved.

This thesis investigates the EHD flow generated by three forms of gas discharge. First, a multiple pin-plate EHD dryer associated with the positive corona discharge is studied using a stationary model. Second, the dynamics of a dielectric barrier discharge (DBD) plasma actuator is simulated with a time-dependent solver. Third, different configurations of the extended DBD are explored to enhance the EHD flow.

The results of the …


Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans Jan 2018

Understanding The Nature Of Nanoscale Wetting Through All-Atom Simulations, Oliver Evans

Williams Honors College, Honors Research Projects

The spreading behavior of spherical and cylindrical water droplets between 30Å and 100Å in radius on a sapphire surface is investigated using all-atom molecular dynamics simulations for durations on the order of tens of nanoseconds. A monolayer film develops rapidly and wets the surface, while the bulk of the droplet spreads on top of the monolayer, maintaining the shape of a spherical cap. Unlike previous simulations in the literature, the bulk radius is found to increase to a maximum value and receed as the monolayer continues to expand. Simple time and droplet size dependence is observed for monolayer radius and …


Evaporation Of A Sessile Droplet On A Slope, Mitch Timm Jan 2018

Evaporation Of A Sessile Droplet On A Slope, Mitch Timm

Dissertations, Master's Theses and Master's Reports

We theoretically examine the drying of a stationary liquid droplet on an inclined surface. Both analytical and numerical approaches are considered, while assuming that the evaporation results from a purely diffusive transport of the liquid vapor and that the contact line is a pinned circle. For the purposes of our analytical calculations, we suppose that the effect of gravity relative to the surface tension is weak, i.e. the Bond number (Bo) is small. Then, we express the shape of the drop and the vapor concentration field as perturbation expansions in terms of Bo. When the Bond number is zero, the …


High Accuracy Methods And Regularization Techniques For Fluid Flows And Fluid-Fluid Interaction, Mustafa Aggul Jan 2018

High Accuracy Methods And Regularization Techniques For Fluid Flows And Fluid-Fluid Interaction, Mustafa Aggul

Dissertations, Master's Theses and Master's Reports

This dissertation contains several approaches to resolve irregularity issues of CFD problems, including a decoupling of non-linearly coupled fluid-fluid interaction, due to high Reynolds number. New models present not only regularize the linear systems but also produce high accurate solutions both in space and time. To achieve this goal, methods solve a computationally attractive artificial viscosity approximation of the target problem, and then utilize a correction approach to make it high order accurate. This way, they all allow the usage of legacy code | a frequent requirement in the simulation of fluid flows in complex geometries. In addition, they all …