Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physics

Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington Jan 2023

Design Of The Highly Uniform Magnetic Field And Spin-Transport Magnetic Field Coils For The Los Alamos National Lab Neutron Electric Dipole Moment Experiment, Jared Brewington

Theses and Dissertations--Physics and Astronomy

Charge-Parity (CP) violation is one of Sakharov's three conditions which serve as guidelines for the generation of a matter-antimatter asymmetry in the early universe. The Standard Model (SM) of particle physics contains sources of CP violation which can be used to predict the baryon asymmetry. The observed baryon asymmetry is not predicted from SM calculations, meaning there must be additional sources of CP violation beyond the Standard Model (BSM) to generate the asymmetry. Permanent electric dipole moments (EDMs), which are inherently parity- and time reversal- violating, present a promising avenue for the discovery of new sources of CP violation to …


Energy Analysis For Neutron Induced Ternary Fission Events In The Niffte Fission Time Projection Chamber, Vanessa Aguilar Apr 2022

Energy Analysis For Neutron Induced Ternary Fission Events In The Niffte Fission Time Projection Chamber, Vanessa Aguilar

Physics

In this paper, energy analyses were made for investigating ternary fission in neutron-induced fission of U235 and U238 using the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration’s fission time projection chamber (TPC) data. The Neutron kinetic energy was calculated from neutron time of flight (nToF) for energy ranges of 0.1 to 32 MeV. Along with this, the Stopping and Range of Ions in Matter (SRIM) software was used to simulate alphas going through an argon gas target in order to calibrate observed energy loss of alphas from ternary fission.


Extraction Of Deep Inelastic Cross Sections Using A 10.4 Gev Electron Beam And A Polarized Helium-3 Target, Murchhana Roy Jan 2022

Extraction Of Deep Inelastic Cross Sections Using A 10.4 Gev Electron Beam And A Polarized Helium-3 Target, Murchhana Roy

Theses and Dissertations--Physics and Astronomy

Experiment E12-06-121 at Jefferson Lab aims to do a precision measurement of the neutron spin structure function g2 using inclusive inelastic scattering of electrons over a large kinematic range of x and Q2. The third moment of the linear combination of the spin structure functions g1 and g2, d2, is one of the cleanest higher twist observables and contains information on quark-gluon correlations. It is connected to the "color polarizability" or "color Lorentz force" of the nucleon. The experimental data taking was successfully conducted in Hall C using a longitudinally polarized electron …


Single-Neutron States In 51ti Via Neutron Transfer Reaction To 50ti, Jessica Nebel-Crosson Apr 2021

Single-Neutron States In 51ti Via Neutron Transfer Reaction To 50ti, Jessica Nebel-Crosson

Physics and Astronomy Honors Papers

My project clarifies previous measurements made for the high excitation states of titanium isotopes, specifically 51Ti. We used a single-neutron transfer reaction from a deuterium source and measured the energy difference between the initial energy of the deuterium source, the transferred neutron, and the free proton. Our analysis included creating angular distribution plots of the proton momentum and the loose assignments of the single-particle state nature for each excitation state. We took these measurements via the Super-Enge Split-Pole Spectrograph at Florida State University.


Fast Neutron Assay Of Elemental Content Of Bulk Samples, Calder Emerson Lane Dec 2020

Fast Neutron Assay Of Elemental Content Of Bulk Samples, Calder Emerson Lane

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this research was to analyze the capabilities of fast neutrons in the detection and analysis of various isotopes in bulk samples. The deuterium-tritium (DT) fusion reaction generates highly penetrating, high-energy (14.1-MeV) neutrons which induce nuclear reactions in irradiated targets. Neutrons and gamma rays are generated in these reactions. Emitted gamma rays are characteristic of the emitter; the gamma spectrum enables stoichiometric identification of the assayed samples. Neutron backscattering can also be used for identification of the elemental composition of the sample.

This work had three objectives. The first objective was to develop a computational technique to model …


Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering Jan 2020

Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering

Theses and Dissertations--Physics and Astronomy

The neutron electric dipole moment (nEDM) collaboration at the Spallation Neutron Source plans to use ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. In this apparatus, neutrons are stored in poly(methyl methacrylate), PMMA, cells located in a strong, stable electric field. This electric field is produced by high voltage electrodes located outside of the neutron cells. Several sources generate charged particles inside the neutron cells. The electric field pulls these charges farther apart, attracting each to the oppositely charged electrode. As the charges build up on the cells walls, they create an …


Investigation Of Isomer Ratios In The Reactions (Γ, N) And (N, 2N) On Nuclei 76Ge And 82Se, Satimbay Palvanov, Turgunali Akhmadzhanov Dec 2019

Investigation Of Isomer Ratios In The Reactions (Γ, N) And (N, 2N) On Nuclei 76Ge And 82Se, Satimbay Palvanov, Turgunali Akhmadzhanov

Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences

The method of the induced activity measured the isomeric yield ratios and cross-sections ratios of reactions (γ, n) and (n, 2n) on nuclei 76Ge and 82Se. Samples of natural have been irradiated in the bremsstrahlung beam of the betatron SB-50 of National University of Uzbekistan in the energy range of 10-35 MeV with energy step of 1 MeV. For 14 MeV neutron irradiation, we used the NG-150 neutron generator of Institute of Nuclear Physics. The gamma spectra reactions products were measured with a spectroscopic system consisting of HPGe detector CANBERRA with energy resolution …


Beryllium And Indium Activation Measurements Of Total Neutron Yield From A Pulsed Photoneutron Source, Kristina K. Brown Sep 2018

Beryllium And Indium Activation Measurements Of Total Neutron Yield From A Pulsed Photoneutron Source, Kristina K. Brown

Physics & Astronomy ETDs

A pulsed photoneutron source consisting of a beryllium sphere and a 5 MeV endpoint 30 ns bremsstrahlung beam emanating from the Mercury pulsed-power source was assembled and tested in October 2017 at the Naval Research Laboratory (NRL) in Washington, D.C. [1]. The objective of this experiment was to verify the feasibility of using a pulsed power source to create a large number of photoneutrons in a short period of time, leveraging the low photoneutron production threshold of 9Be to maximize neutron production. Several diagnostics were deployed to characterize the source and target, including indium and beryllium activation detectors that measured …


Asymmetric Relativistic Fermi Gas Model For Quasielastic Lepton-Nucleus Scattering, M. B. Barbaro, A. De Pace, T. W. Donnelly, J. A. Caballero, G. D. Megias, J. W. Van Orden Sep 2018

Asymmetric Relativistic Fermi Gas Model For Quasielastic Lepton-Nucleus Scattering, M. B. Barbaro, A. De Pace, T. W. Donnelly, J. A. Caballero, G. D. Megias, J. W. Van Orden

Physics Faculty Publications

We develop an asymmetric relativistic Fermi gas model for the study of the electroweak nuclear response in the quasielastic region. The model takes into account the differences between neutron and proton densities in asymmetric (N> Z) nuclei, as well as differences in the neutron and proton separation energies. We present numerical results for both neutral and charged-current processes, focusing on nuclei of interest for ongoing and future neutrino oscillation experiments. We point out some important differences with respect to the commonly employed symmetric Fermi gas model.


Characterization Of Reactor Background Radiation At Hfir For The Prospect Experiment, Blaine Alexander Heffron May 2017

Characterization Of Reactor Background Radiation At Hfir For The Prospect Experiment, Blaine Alexander Heffron

Masters Theses

This work describes an investigation of the background radiation present at the High Flux Isotope Reactor (HFIR) on behalf of the PROSPECT collaboration. The PROSPECT experiment is designed to make a precision measurement of the antineutrino spectrum at HFIR and search for sterile neutrinos. Temporal and spacial variation of neutron and gamma backgrounds at the experiment site for the PROSPECT detector are measured in order to determine if the reactor correlated radiation will contribute a significant background to the inverse beta decay signal. Knowledge of spacial background variation will also be used to inform the design of a local shield …


Beam-Target Double-Spin Asymmetry In Quasielastic Electron Scattering Off The Deuteron With Clas, M. Mayer, S. E. Kuhn, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, G. Asryan, H. Avakian, R. A. Badui, J. Ball, N. A. Baltzell, S. Bueltmann, N. Guler, C. E. Hyde, M. Khachatryan, A. Klein, Y. Prok, F. Sabatie, B. Torayev, L. B. Weinstein Feb 2017

Beam-Target Double-Spin Asymmetry In Quasielastic Electron Scattering Off The Deuteron With Clas, M. Mayer, S. E. Kuhn, K. P. Adhikari, Z. Akbar, S. Anefalos Pereira, G. Asryan, H. Avakian, R. A. Badui, J. Ball, N. A. Baltzell, S. Bueltmann, N. Guler, C. E. Hyde, M. Khachatryan, A. Klein, Y. Prok, F. Sabatie, B. Torayev, L. B. Weinstein

Physics Faculty Publications

Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multinucleon system and as an effective neutron target. Quasielastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron.

Purpose: The experimental data presented here can be used to test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on spin-momentum correlations in …


Neutron-Gamma Discrimination In Elpasolite Scintillator Detector, Brittany Morgan May 2016

Neutron-Gamma Discrimination In Elpasolite Scintillator Detector, Brittany Morgan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Existing nuclear stockpiles and weapons-making capabilities imperil the global community. Current nonproliferation efforts involve the research and development of newer, more efficient detection systems that can be deployed for the interdiction and monitoring of special nuclear materials (SNM). Spontaneous and induced fission events in SNM produce neutrons and gamma rays, which can be detected and analyzed, in particular, using scintillator detectors. Various electronic data acquisition systems and data analysis methods have been employed to record and characterize neutron and photon signatures. The goal of this thesis is to develop a new method of discrimination between neutrons and photons in the …


Neutron Polarimetry With Polarized 3he For The Npdgamma Experiment, Matthew Martin Musgrave May 2014

Neutron Polarimetry With Polarized 3he For The Npdgamma Experiment, Matthew Martin Musgrave

Doctoral Dissertations

Cold neutrons enable the study of the fundamental interactions of matter in low-energy, low-background experiments that complement the efforts of high-energy particle accelerators. Neutrons possess an intrinsic spin, and the polarization of a beam of neutrons defines the degree to which their spins are oriented in a given direction. The NPDGamma experiment uses a polarized beam of cold neutrons to make a high precision measurement, on the order of one part in 100 million, of the parity-violating asymmetry in the angular distribution of emitted gamma-rays from the capture of polarized neutrons on protons. This asymmetry is a result of the …


Precision Measurement Of The Neutron Beta-Decay Asymmetry, Michael P. Mendenhall, Robert W. Pattie, Yelena Bagdasarova, David B. Berguno, Leah J. Broussard, Richard Carr, Scott Currie, Xinjian Ding, Bradley W. Filippone, Alejandro Garcia, Peter Geltenbort, Kevin P. Hickerson, J. Todd Hoagland, Anthony T. Holley, Ran Hong, Takeyasu M. Ito, Andreas Knecht, Chenyu Liu, J. L. Liu, Mark Makela, Russell R. Mammei, J. W. Martin, Dan Melconian, Spencer D. Moore, Christopher L. Morris, Margaret L. Pitt, Blakely Plaster, John C. Ramsey, Roger Rios, Andy Saunders, Susan J. Seestrom, Eduard I. Sharapov, Walter E. Sondheim, E. Tatar, Robert B. Vogelaar, Brittany Vorndick, Christopher Wrede, Andrew R. Young, B. A. Zeck Mar 2013

Precision Measurement Of The Neutron Beta-Decay Asymmetry, Michael P. Mendenhall, Robert W. Pattie, Yelena Bagdasarova, David B. Berguno, Leah J. Broussard, Richard Carr, Scott Currie, Xinjian Ding, Bradley W. Filippone, Alejandro Garcia, Peter Geltenbort, Kevin P. Hickerson, J. Todd Hoagland, Anthony T. Holley, Ran Hong, Takeyasu M. Ito, Andreas Knecht, Chenyu Liu, J. L. Liu, Mark Makela, Russell R. Mammei, J. W. Martin, Dan Melconian, Spencer D. Moore, Christopher L. Morris, Margaret L. Pitt, Blakely Plaster, John C. Ramsey, Roger Rios, Andy Saunders, Susan J. Seestrom, Eduard I. Sharapov, Walter E. Sondheim, E. Tatar, Robert B. Vogelaar, Brittany Vorndick, Christopher Wrede, Andrew R. Young, B. A. Zeck

Robert W. Pattie Jr.

A new measurement of the neutron β-decay asymmetry A0 has been carried out by the UCNA collaboration using polarized ultracold neutrons (UCN) from the solid deuterium UCN source at the Los Alamos Neutron Science Center (LANSCE). Improvements in the experiment have led to reductions in both statistical and systematic uncertainties leading to A0 = −0.11954(55)stat.(98)syst., corresponding to the ratio of axial-vector to vector coupling λ ≡ gA/gV = −1.2756(30). 


Characterization Of A Boron Carbide Heterojunction Neutron Detector, James E. Bevins Mar 2011

Characterization Of A Boron Carbide Heterojunction Neutron Detector, James E. Bevins

Theses and Dissertations

New methods for neutron detection have become an important area of research in support of national security objectives. In support of this effort, p-type B5C on n-type Si heterojunction diodes have been built and tested. This research sought to optimize the boron carbide (BC) diode by coupling the nuclear physics modeling capability of GEANT4 and TRIM with the semiconductor device simulation tools. Through an iterative modeling process of controllable parameters, optimal device construction was determined such detection efficiency and charge collection were optimized. This allows an estimation of expected charge collection and efficiency given a set of operating …


Exclusive Π- Electro-Production From The Neutron In The Resonance Region, Jixie Zhang Apr 2010

Exclusive Π- Electro-Production From The Neutron In The Resonance Region, Jixie Zhang

Physics Theses & Dissertations

The study of baryon resonances is crucial to our understanding of nucleon structure. Although the excited states of the proton have been studied in great detail, there are very few data available for the neutron resonances because of the difficulty inherent in obtaining a free neutron target. To overcome this limitation, the spectator tagging technique was used in one of the CEBAF Large Acceptance Spectrometer (CLAS) collaboration experiments, Barely off-shell Nuclear Structure (BoNuS), in Hall-B at Jefferson Lab. We have constructed a radial time projection chamber (RTPC) based on the gaseous electron multiplier (GEM) technology to detect low momentum …


Polarimetry Studies For The Npdgamma Experiment At The Sns, Jonny Dadras Nov 2009

Polarimetry Studies For The Npdgamma Experiment At The Sns, Jonny Dadras

Jonny Dadras

The NPDGamma collaboration aims to measure a parity-violating directional gamma-ray asymmetry from the capture of polarized cold neutrons on protons. The asymmetry, predicted to be on the order of 50 ppb, is a result of the weak interaction between mesons and nucleons during the neutron capture reaction. The experiment is designed to make a statistics limited measurement of the asymmetry at the level of about 20%. The experiment will be carried out at the Fundamental neutron Physics Beamline (FnPB) at the Spallation Neutron Source (SNS). The neutron beam is polarized by a super-mirror polarizer. A 9.5 G magnetic field guides …


Dynamics Of Apomyoglobin In The Α-To-Β Transition And Of Partially Unfolded Aggregated Protein, E. Fabiani, A. M. Stadler, D. Madern, M. M. Koza, M. Tehei, M. Hirai, G. Zaccai Oct 2008

Dynamics Of Apomyoglobin In The Α-To-Β Transition And Of Partially Unfolded Aggregated Protein, E. Fabiani, A. M. Stadler, D. Madern, M. M. Koza, M. Tehei, M. Hirai, G. Zaccai

Faculty of Science - Papers (Archive)

Changes of molecular dynamics in the α-to-β transition associated with amyloid fibril formation were explored on apo-myoglobin (ApoMb) as a model system. Circular dichroism, neutron and X-ray scattering experiments were performed as a function of temperature on the protein, at different solvent conditions. A significant change in molecular dynamics was observed at the α-to-β transition at about 55 ˚C, indicating a more resilient high temperature β structure phase. A similar effect at approximately the same temperature was observed in holo-myoglobin, associated with partial unfolding and protein aggregation. A study in a wide temperature range between 20 K and 360 K …


Electron Scattering From A High Momentum Neutron In Deuterium, Alexei V. Klimenko Apr 2004

Electron Scattering From A High Momentum Neutron In Deuterium, Alexei V. Klimenko

Physics Theses & Dissertations

The deuterium nucleus is a system of two nucleons (proton and neutron) bound together. The configuration of the system is described by a quantum-mechanical wave function and the state of the nucleons at a given time is not known a priori. However, by detecting a backward going proton of moderate momentum in coincidence with a reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred if we assume that the proton was a spectator to the reaction. This method, known as spectator tagging, was used to study the electron scattering from high-momentum neutrons …