Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physics

Energy Analysis For Neutron Induced Ternary Fission Events In The Niffte Fission Time Projection Chamber, Vanessa Aguilar Apr 2022

Energy Analysis For Neutron Induced Ternary Fission Events In The Niffte Fission Time Projection Chamber, Vanessa Aguilar

Physics

In this paper, energy analyses were made for investigating ternary fission in neutron-induced fission of U235 and U238 using the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration’s fission time projection chamber (TPC) data. The Neutron kinetic energy was calculated from neutron time of flight (nToF) for energy ranges of 0.1 to 32 MeV. Along with this, the Stopping and Range of Ions in Matter (SRIM) software was used to simulate alphas going through an argon gas target in order to calibrate observed energy loss of alphas from ternary fission.


Finding And Analyzing U235 And U238 Ternary Fission Events In The Niffte Fissiontpc, Gabriel A. Oman Jun 2019

Finding And Analyzing U235 And U238 Ternary Fission Events In The Niffte Fissiontpc, Gabriel A. Oman

Physics

In this analysis, the differences between ternary and binary fission were explored using data from the NIFFTE Collaboration’s fission time projection chamber (TPC). The ratio of binary-to-ternary events for U-235 and U-238 as a function of neutron kinetic energy in the range of 1-30 MeV is presented. The typical value of the ratio is approximately 105 binary fissions per ternary fission, in agreement with previously published measurements. Future work will involve distinguishing the fissions of the two isotopes to provide more insight into this rare process.


Investigation Of Neutron Induced Ternary Fission With The Niffte Time Projection Chamber, Alex C. Kemnitz Nov 2017

Investigation Of Neutron Induced Ternary Fission With The Niffte Time Projection Chamber, Alex C. Kemnitz

Physics

Ternary fission is a rare occurrence in which three particles are produced from a single fission event. This analysis uses tracked fission event data recorded by NIFFTE’s time projection chamber with a series of refined cuts to isolate all possible ternary events. The experiment used two targets, each consisting of two isotopes; one target was Pu-239 and U-235, and the other was U-238 and U-235. The data was used to measure the ternary/binary fission ratios for each isotope. The ratios for the Pu-239 and U-235 target that were found are shown to be too high due to alpha contamination. The …


Working With Cuore In Search For The Neutrinoless-Double Beta Decay, Kevin H. Phung Jun 2017

Working With Cuore In Search For The Neutrinoless-Double Beta Decay, Kevin H. Phung

Physics

The neutrino, if found to be its own anti-particle, will reshape the Standard Model of physics. This paper will give some background information regarding CUORE’s experiment to discover the radioactive process known as neutrinoless double-beta decay, how their experiment works, and my own involvement in their research during the installation phase of the project in the summer of 2017.


Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul Sep 2015

Low Intensity Gamma-Ray Spectroscopy Of The Lake Labyrinth Meteorite, Tristan C. Paul

Physics

A 23.7g fragment of the Lake Labyrinth Meteorite (fell in 1924, collected in 1934 at Lake Labyrinth in South Australia, Australia) was re-investigated for evidence of the presence of 98Tc using a two dimensional low-intensity gamma-ray spectrometer. A new calibration technique using 26Al sources found the gamma-rays previously thought to be due to 98Tc are more likely from 166Ho. The presence of 166Ho is most likely due to activation of the stable 165Ho in the meteorite from terrestrial background sources where it was stored.


Fission Fragment Tracking And Identification In The Neutron-Induced Fission Fragment Tracking Experiment’S Time Projection Chamber, Eric Song Mar 2015

Fission Fragment Tracking And Identification In The Neutron-Induced Fission Fragment Tracking Experiment’S Time Projection Chamber, Eric Song

Physics

The Neutron-Induced Fission Fragment Tracking Experiment (NIFFTE) built a novel Time Projection Chamber (TPC), the FissionTPC, for measuring neutron-induced fission cross-sections to unprecedented precision. We investigated data from a 2014 run (400010151) at the Los Alamos Neutron Science Center (LANSCE) with a double-sided U235/Pu239 target. Our particle identification studies will aid in the development of improved tracking algorithms.


Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii Jun 2014

Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay, and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the bonding process used to connect the heater pads and NTDs to the copper housings of the tower structure. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved during the bonding stage of the assembly process.


Monte Carlo Glauber Model Of Nuclear Collisions, Chad F. Rexrode Jun 2014

Monte Carlo Glauber Model Of Nuclear Collisions, Chad F. Rexrode

Physics

In order to understand the geometry of nuclear collisions, an iPython-based simulation of the Monte- Carlo Glauber model was created. The simulation utilizes nuclear charge density distributions to create nuclei and cross-section data from the Particle Data Group to generate large samples of nuclear collisions. The simulation correlates the number of nucleons participating in a collision as well as the number of binary collisions as a function of the impact parameter for each event. Good agreement between the program and expected results for Au+Au collisions at beam energies of 200 GeV is demonstrated. The program also makes predictions on future …


Contributions To The Cuore Collaboration, Samuel Joseph Meijer Jul 2013

Contributions To The Cuore Collaboration, Samuel Joseph Meijer

Physics

This paper describes work done between 2010 and 2013 to contribute to the CUORE collaboration, a physics collaboration searching for neutrinoless double-beta decay in tellurium. Measurement of this decay would indicate fundamental information about the nature of the neutrino. The implementation of a parylene-coated detector frame is described. Also, a temperature stabilization system for an automated gluing system was constructed. An image recognition algorithm is described for locating spots of glue and evaluating their acceptability.


Contributions To Background Reduction And Computer Simulations For Cuore & Cuore-0, Ivo J. Plamenac Apr 2013

Contributions To Background Reduction And Computer Simulations For Cuore & Cuore-0, Ivo J. Plamenac

Physics

CUORE and CUORE-0 aim to observe neutrinoless double beta decay in 130Te; observing such this particular decay would substantiate the Majorana model for the neutrino and expand our current understanding of particle physics. This report will provide an overview of the Standard Model, our current framework for particle interactions, as well as the technical details of the CUORE experiment. Over the summers of 2010 and 2011, I contributed to the efforts of the CUORE collaboration by assisting in aspects such as background reduction, and explored detector behavior using computer simulations.


Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias Mar 2013

Density Functional Theory And The Calculation Of Tcmg2O4 Spinel Lattice Parameters, Jon Karlo Macias

Physics

The cohesive energy, lattice constant and bulk modulus of two simple HCP crystal structures of magnesium and technetium were calculated using the vienna ab initio simulation package (VASP) which is based on density functional theory (DFT). The same properties were determined for TcMg2O4 spinel. The theoretical results of the lattice constant of the pure crystals were compared to experimental results and found to be in excellent agreement with a difference of less than 2%. The results for the lattice constant of the TcMg2O4 spinel were found to be in excellent agreement as well with …


A Modular Design For Nuclear Battery Technology, Randy Lao Jun 2011

A Modular Design For Nuclear Battery Technology, Randy Lao

Physics

This paper is an exploration of the physics and technology behind the development and on-going research of nuclear batteries. This includes the topics of isotope radiation suitable for such a device as well as the components necessary to utilize the energy of natural decay, such as solid and liquid semiconductors. Most importantly for public use, the battery requires a safe containment system while allowing convenient modularity. An efficiency and total output comparison will be made with standard button cell and dry cell batteries. Also, a proposal is made for the design of an enclosure to contain radioactive materials. The safe …


Design And Construction Of A Thermal Diffusion Cloud Chamber, Alexander Donoghue Jun 2010

Design And Construction Of A Thermal Diffusion Cloud Chamber, Alexander Donoghue

Physics

This paper will cover the theory behind a thermal diffusion cloud chamber. In addition to that it will cover the process, thought and material used to construct two different cloud chambers. It will also discuss the effects of materials used in each chamber on the working of the chamber.


Identification Of Bottom Quark Jets In Pb+Pb Collisions In Alice At The Lhc, Brandon Boswell Jun 2010

Identification Of Bottom Quark Jets In Pb+Pb Collisions In Alice At The Lhc, Brandon Boswell

Physics

In the near future, the Large Hadron Collider (LHC) will begin colliding lead ions together with energies high enough to produce a state of matter known as the Quark-Gluon Plasma (QGP). Simulations have shown that Bottom-quark-jets (B-jets) are expected to be produced in these collisions, and that these B-jets provide a useful probe into the nature of the QGP. The ALICE detector (A Large Ion Collider Experiment) at the LHC is designed to study the nature of the QGP. In this paper we investigate the effect of requiring that an electron be inside observed jets and how this improves the …