Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Nuclear

Masters Theses

2011

Articles 1 - 2 of 2

Full-Text Articles in Physics

Nuclear Modification Factor For Production Of Open Heavy Flavor At Forward Rapidity In Cu+Cu Collisions, Archil Garishvili Dec 2011

Nuclear Modification Factor For Production Of Open Heavy Flavor At Forward Rapidity In Cu+Cu Collisions, Archil Garishvili

Masters Theses

The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory with its muon spectrometer has the ability to detect muons over the range of pseudorapidity 1.1 < |eta| < 2.25. Single muon production is an important tool for studying heavy flavor production via semi-leptonic decays of open heavy flavor mesons. Because of their large mass, heavy quarks are produced in earlier stages of heavy ion collisions. Therefore, heavy flavor production can serve as an important probe of the Quark Gluon Plasma, a novel state of matter predicted to be created at RHIC. The measurement of the nuclear modification factor of open heavy flavor at forward rapidity in Cu+Cu collisions at sqrt{s_{NN}}=200 GeV is presented. Measurements of heavy flavor production in p+p collisions at sqrt{s_{NN}}=200 GeV will be also presented.


A Study Of The Release Properties Of Sn And Sns From An Isol-Type Target/Ion Source System, Ronald Earl Goans May 2011

A Study Of The Release Properties Of Sn And Sns From An Isol-Type Target/Ion Source System, Ronald Earl Goans

Masters Theses

Radioactive ion beams (RIBs) provide a method for studying the properties of increasingly exotic nuclei. For many nuclei, the intensity of the RIB available in the isotope separation on-line (ISOL) technique is limited by the relatively long delay time in the target/ion source system (TISS). New techniques are needed to decrease this delay time, thereby increasing the intensity of the RIBs available for study.

The sulfide molecular sideband was discovered in 2001 as a way to greatly enhance the quality of Sn beams. Holdup measurements were performed at the Holifield Radioactive Ion Beam Facility (HRIBF) to determine the extent to …