Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Cross Sections Of The 83rb (P,Γ)84sr And 84kr(P,Γ)85rb Reactions At Energies Characteristic Of The Astrophysical Γ Process, M. Williams, B. Davids, G. Lotay, N. Nishimura, T. Rauscher, S. A. Gillespie, M. Alcorta, Alan M. Amthor, G. C. Ball, S. S. Bhattacharjee, V. Bildstein, W. N. Catford, D. T. Doherty, N. E. Esker, A. B. Garnsworthy, G. Hackman, K. Hudson, A. Lennarz, C. Natzke, B. Olaizola, A. Psaltis, C. E. Svensson, J. Williams, D. Walter, D. Yates Mar 2023

Cross Sections Of The 83rb (P,Γ)84sr And 84kr(P,Γ)85rb Reactions At Energies Characteristic Of The Astrophysical Γ Process, M. Williams, B. Davids, G. Lotay, N. Nishimura, T. Rauscher, S. A. Gillespie, M. Alcorta, Alan M. Amthor, G. C. Ball, S. S. Bhattacharjee, V. Bildstein, W. N. Catford, D. T. Doherty, N. E. Esker, A. B. Garnsworthy, G. Hackman, K. Hudson, A. Lennarz, C. Natzke, B. Olaizola, A. Psaltis, C. E. Svensson, J. Williams, D. Walter, D. Yates

Faculty Journal Articles

We have measured the cross section of the 83 Rb ( p , γ ) 84 Sr radiative capture reaction in inverse kinematics using a radioactive beam of 83 Rb at incident energies of 2.4 and 2.7 A MeV. Prior to the radioactive beam measurement, the 84 Kr ( p , γ ) 85 Rb radiative capture reaction was measured in inverse kinematics using a stable beam of 84 Kr at an incident energy of 2.7 A MeV. The effective relative kinetic energies of these measurements lie within the relevant energy window for the γ process in supernovae. The central …


Beam-Spin Asymmetries From Semi-Inclusive Pion Electroproduction, K. P. Adhikari, M. J. Amaryan, C. Hyde, S. Koirala, S. E. Kuhn, L. B. Weinstein, Et Al., The Clas Collaboration Jan 2014

Beam-Spin Asymmetries From Semi-Inclusive Pion Electroproduction, K. P. Adhikari, M. J. Amaryan, C. Hyde, S. Koirala, S. E. Kuhn, L. B. Weinstein, Et Al., The Clas Collaboration

Physics Faculty Publications

We have measured the moment Asin ɸLU corresponding to the polarized electron beam-spin asymmetry in semi-inclusive deep inelastic scattering. Asin ɸLU is a twist-3 quantity providing information about quark-gluon correlations. Data were taken with the CLAS Spectrometer at Jefferson Lab using a 5.498 GeV longitudinally polarized electron beam and an unpolarized liquid hydrogen target. All three pion channels (π+0 and π-) were measured simultaneously over a large range of kinematics within the virtuality range Q2 ≈ 1.0- 4.5 GeV2. The observable was measured with better than 1% statistical …


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.