Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell Jul 2018

Investigation Of The Acoustic Response Of A Confined Mesoscopic Water Film Utilizing A Combined Atomic Force Microscope And Shear Force Microscope Technique, Monte Allen Kozell

Dissertations and Theses

An atomic force microscopy beam-like cantilever is combined with an electrical tuning fork to form a shear force probe that is capable of generating an acoustic response from the mesoscopic water layer under ambient conditions while simultaneously monitoring force applied in the normal direction and the electrical response of the tuning fork shear force probe. Two shear force probes were designed and fabricated. A gallium ion beam was used to deposit carbon as a probe material. The carbon probe material was characterized using energy dispersive x-ray spectroscopy and scanning transmission electron microscopy. The probes were experimentally validated by demonstrating the …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie May 2007

Growth By Molecular Beam Epitaxy Of Self-Assembled Inas Quantum Dots On Inalas And Ingaas Lattice-Matched To Inp, Paul J. Simmonds, H W. Li, H E. Beere, P See, A J. Shields, D A. Ritchie

Paul J. Simmonds

The authors report the results of a detailed study of the effect of growth conditions, for molecular beam epitaxy, on the structural and optical properties of self-assembled InAs quantum dots (QDs) on In0.524Al0.476As. InAs QDs both buried in, and on top of, In0.524Al0.476As were analyzed using photoluminescence (PL) and atomic force microscopy. InAs QD morphology and peak PL emission wavelength both scale linearly with deposition thickness in monolayers (MLs). InAs deposition thickness can be used to tune QD PL wavelength by 170 nm/ML, over a range of almost 700 nm. Increasing growth …