Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao Oct 2016

Thermoelectric Magnetohydrodynamic Effects In Solidification Processes, Andrew Kao, Koulis Pericleous, Peter Lee, Biao Cai, Jianrong Gao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu Aug 2016

Photoluminescence Measurement On Low-Temperature Metal Modulation Epitaxy Grown Gan, Yang Wu

Graduate Theses and Dissertations

A low-temperature photoluminescence (PL) study was conducted on low-temperature metal modulation epitaxy (MME) grown GaN. By comparing the PL signal from high temperature grown GaN buffer layers, and MME grown cap layers on top of the buffer layers, it was found that MME grown GaN cap has a significantly greater defect-related emission. The band edge PL from MME grown GaN found to be 3.51eV at low temperature. The binding energy of the exciton in GaN is determined to be 21meV through temperature dependence analysis. A PL peak at 3.29eV was found in the luminescence of the MME grown cap layer, …


Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li Jan 2016

Investigation Of The Resistance To Demagnetization In Bulk Rare-Earth Magnets Comprised Of Crystallographically-Aligned, Single-Domain Crystallites With Modified Intergranular Phase, Jie Li

Dissertations, Master's Theses and Master's Reports

The research presented in this dissertation investigates whether an increased coercivity of Neodymium-Iron-Boron (Nd2Fe14B) based bulk magnets at elevated temperature (160°C), which is now only obtainable by substituting ~7wt% dysprosium (Dy) for a portion of neodymium (Nd), can be achieved through specific microstructural modifications with decreased Dy concentrations. The approach is to reduce the size of individual crystallographically-aligned grains in the magnet so that each grain can only support a single magnetic domain and to simultaneously dilute the Nd-Fe inter-granular phase present in conventional magnets with a non-Fe-containing, Nd-rich phase (Nd-Cu alloy) in an attempt to partially magnetically isolate the …