Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physics

Measuring The Role Of Inhibition In Auditory Discrimination In Mice, Tazima Nur Dec 2014

Measuring The Role Of Inhibition In Auditory Discrimination In Mice, Tazima Nur

Graduate Theses and Dissertations

Understanding how inhibitory neurons affect sensory information processing in the cerebral cortex is an ongoing goal of both neuroscience and statistical physics research. In this master's thesis research project, an experimental system has been designed and built for studying how auditory dynamic range depends on inhibitory neurons, based on observations of mouse behavior. In this thesis, firstly, the topic of inhibition and information processing has been introduced. Then two papers related to inhibition and dynamic range has been reviewed in detail. One of the papers is an experimental work that analyzes the affect of inhibition on dynamic range. The other …


Evaluation Of Yttrium-90 Positron Emission Tomography Dosimetry, Katherine N. Tapp Oct 2014

Evaluation Of Yttrium-90 Positron Emission Tomography Dosimetry, Katherine N. Tapp

Open Access Dissertations

Purpose: Radioembolization is a novel treatment which utilizes the liver's unique dual system blood supply to trap yttrium-90 (90Y) microspheres in microvasculature near liver tumors. Radioembolization dose planning and dosimetry are based on crude, inaccurate assumptions due to the lack of knowledge of patient specific 90Y microsphere distribution. In recent years, the very small 3.1867e-5 internal pair production decay branch of 90Y has been shown to allow for positron emission tomography (PET) imaging following radioembolization. This work explores the accuracy and limitation of 90Y PET imaging due to the extremely low signal to noise (SNR) …


Volumetric Scintillation Dosimetry For Scanned Proton Beams, Daniel G. Robertson Aug 2014

Volumetric Scintillation Dosimetry For Scanned Proton Beams, Daniel G. Robertson

Dissertations & Theses (Open Access)

Scanned beam proton therapy is a promising cancer treatment modality which is becoming more widely available with the increasing number of proton radiotherapy centers. Scanned proton beams can produce complex 3D dose distributions, presenting a challenge for adequate quality assurance testing. Because each scanned beam dose measurement requires the delivery of the entire field, multiple measurements can be time consuming. These quality assurance challenges limit the number of patients who can be treated with this modality. The overall objective of this project is to increase the safety and availability of complex proton therapy treatments by developing a fast volumetric scintillation …


Development Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Austin M. Faught Aug 2014

Development Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Austin M. Faught

Dissertations & Theses (Open Access)

Introduction: Commercially available treatment planning systems (TPS) may use a number of different radiation dose calculation algorithms during the planning process. The Radiological Physics Center (RPC), tasked with ensuring clinically comparable and consistent dose delivery amongst institutions participating in NCI funded multi-institutional clinical trials, has traditionally relied upon measurements to achieve this objective. As a supplement to the tools used by the RPC, an independent dose calculation tool is needed to determine patient dose distributions in three dimensions so as to act as a quality assurance tool for the dose calculations.

Methods: Multiple source models representing the output of Elekta …


Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder Aug 2014

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder

UNLV Theses, Dissertations, Professional Papers, and Capstones

The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud …


A Non-Contrast Magnetic Resonance Imaging Technique To Assess Blood-Brain Barrier Permeability, Harini Pandithasekera Jun 2014

A Non-Contrast Magnetic Resonance Imaging Technique To Assess Blood-Brain Barrier Permeability, Harini Pandithasekera

Electronic Thesis and Dissertation Repository

The Blood-brain barrier (BBB) regulates the entry of compounds between the blood and the brain, thus plays an important role in brain homeostasis. Studies indicate in disease states such as Alzheimer’s the BBB integrity is compromised. The motive of this project is to investigate the sensitivity of the diffusion-weighted arterial spin labeling (DW-ASL) technique to detect water exchange. Testing the sensitivity requires a reliable method of opening the barrier at specific locations of the brain. Here, a unique technology named focused ultrasound (FUS) has been used to mimic a compromised BBB environment.

A series of experiments were conducted in a …


Evaluation Of Artifacts In Experimental Cine 4d Ct Acquisition Methods, Sarah Joy May 2014

Evaluation Of Artifacts In Experimental Cine 4d Ct Acquisition Methods, Sarah Joy

Dissertations & Theses (Open Access)

Four-dimensional computed tomography (4D CT) has increased the accuracy of radiation treatment planning for patients in whom the extent of target motion is large. 4D CT has become a standard of care for radiation treatment simulation, allowing decreased motion artifacts and increased spatiotemporal localization of anatomical structures that move. However, motion artifacts may still remain. These artifacts, or artificial anatomic spatial distributions, add a systematic uncertainty to the treatment process and limit the accuracy of lung function images derived from CT. We proposed to reduce the motion artifacts in cine 4D CT by using three novel investigational 4D CT acquisition …


Forecasting Longitudinal Changes In Oropharyngeal Tumor Volume, Position, And Morphology During Image-Guided Radiation Therapy, Adam D. Yock May 2014

Forecasting Longitudinal Changes In Oropharyngeal Tumor Volume, Position, And Morphology During Image-Guided Radiation Therapy, Adam D. Yock

Dissertations & Theses (Open Access)

The purpose of this work was to generate, evaluate, and compare models that predict longitudinal changes in oropharyngeal tumor volume, position, and morphology during radiation therapy.

One volume, one position, and two morphology (size, shape, and position) feature vectors were used to describe 35 oropharyngeal gross tumor volumes (GTVs) during radiation therapy. The two morphology feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 surface landmarks. The other was based on a spherical harmonic decomposition of these distances. For a …


Use Of Positron Emission Tomography For Proton Therapy Verification, Jongmin Cho May 2014

Use Of Positron Emission Tomography For Proton Therapy Verification, Jongmin Cho

Dissertations & Theses (Open Access)

Positron emission tomography (PET), a tool commonly used for cancer staging and response monitoring, has recently been used for proton therapy verification. By imaging tissue activation following proton treatment, attempts have been made to verify proton dose and range. In this dissertation, two novel approaches were developed and tested for the purpose of help improve the proton dose and range estimation as well as verification.

Although there are still some challenges, attempts for proton dose verification using PET has been made by comparing Monte Carlo dose and PET simulations with treatment planned dose and measured PET. In this approach, …


Image-Guided Proton Therapy For Online Dose-Evaluation And Adaptive Planning, Joey P. Cheung May 2014

Image-Guided Proton Therapy For Online Dose-Evaluation And Adaptive Planning, Joey P. Cheung

Dissertations & Theses (Open Access)

The main advantage for using protons in radiotherapy is their finite range in patients, allowing for potential improved sparing of normal tissues. However, this comes at a cost of increased sensitivity to range uncertainties. Density changes along the beam path will affect the proton range and the resultant dose distribution, making it difficult to estimate the impact of visible anatomic changes to the patient dose distribution. In order to better understand the effect of anatomy change on proton dose, some form of treatment-time verification is required and methods to correct for observed changes would be beneficial. Therefore, this project aims …


Resting State Functional Magnetic Resonance And Diffusion Tensor Imaging Of Hemiplegic Cerebral Palsy Patients Treated With Constraint-Induced Movement Therapy: Predictors And Clinically Correlated Evidence Of Neuroplasticity, Kathryn Y. Manning Mar 2014

Resting State Functional Magnetic Resonance And Diffusion Tensor Imaging Of Hemiplegic Cerebral Palsy Patients Treated With Constraint-Induced Movement Therapy: Predictors And Clinically Correlated Evidence Of Neuroplasticity, Kathryn Y. Manning

Electronic Thesis and Dissertation Repository

Hemiplegic cerebral palsy is characterized by unilateral upper limb impairment and patients often compensate by performing most tasks with their unaffected arm. Constraint-induced movement therapy (CIMT) directly combats this learned non-use by casting the unaffected arm and forcing the patient to repetitively practice skills with the hemiplegic limb. Subjects with hemiplegic cerebral palsy were recruited from Holland Bloorview Kids Rehabilitation Hospital, Thames Valley Children’s Centre and McMaster Children’s Hospital. MRI acquisitions and clinical evaluations were collected at baseline, 1 and 6-months later. The case group participated in a CIMT camp after baseline evaluations and was compared to an untreated control …


Impact Testing Of Youth-Level Helmets Versus College-Level Helmets, Nicole Hermann Mar 2014

Impact Testing Of Youth-Level Helmets Versus College-Level Helmets, Nicole Hermann

Industrial Technology and Packaging

With so many studies being conducted on professional football players regarding concussions and other related brain injuries, it’s amazing that such an important demographic has been missed. While NFL players are just as subjected to serious injuries as anyone else or even more so, it is important to remember that these players are outfitted, in most cases, with top-of-the-line equipment -- especially their helmets. If the focus is shifted to a younger demographic, youth football players in middle school and high school, the equipment is far less advanced and in a vast majority of cases, has been previously used by …


An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson Jan 2014

An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson

Theses and Dissertations

Deformable image registration (DIR) is an essential tool in medical image processing. It provides a means to combine image datasets, allowing for intra-subject, inter-subject, multi-modality, and multi-instance analysis, as well as motion detection and compensation. One of the most popular DIR algorithms models the displacement vector field (DVF) as B-splines, a sum of piecewise polynomials with coefficients that enable local shape control. B-splines have many advantageous properties in the context of DIR, but they often struggle to adequately model steep local gradients and discontinuities. This dissertation addresses that limitation by proposing the replacement of conventional B-splines with a generalized formulation …