Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder Aug 2014

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder

UNLV Theses, Dissertations, Professional Papers, and Capstones

The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud …


Image-Guided Proton Therapy For Online Dose-Evaluation And Adaptive Planning, Joey P. Cheung May 2014

Image-Guided Proton Therapy For Online Dose-Evaluation And Adaptive Planning, Joey P. Cheung

Dissertations & Theses (Open Access)

The main advantage for using protons in radiotherapy is their finite range in patients, allowing for potential improved sparing of normal tissues. However, this comes at a cost of increased sensitivity to range uncertainties. Density changes along the beam path will affect the proton range and the resultant dose distribution, making it difficult to estimate the impact of visible anatomic changes to the patient dose distribution. In order to better understand the effect of anatomy change on proton dose, some form of treatment-time verification is required and methods to correct for observed changes would be beneficial. Therefore, this project aims …


Use Of Positron Emission Tomography For Proton Therapy Verification, Jongmin Cho May 2014

Use Of Positron Emission Tomography For Proton Therapy Verification, Jongmin Cho

Dissertations & Theses (Open Access)

Positron emission tomography (PET), a tool commonly used for cancer staging and response monitoring, has recently been used for proton therapy verification. By imaging tissue activation following proton treatment, attempts have been made to verify proton dose and range. In this dissertation, two novel approaches were developed and tested for the purpose of help improve the proton dose and range estimation as well as verification.

Although there are still some challenges, attempts for proton dose verification using PET has been made by comparing Monte Carlo dose and PET simulations with treatment planned dose and measured PET. In this approach, …


Three‐Dimensional Brain Mri For Dbs Patients Within Ultra‐Low Radiofrequency Power Limits, Subhendra N. Sarkar, Efstathios Papavassiliou, David Hackney, David Alsop, Ananth Madhuranthakam, Ludy Shih, Reed Busse, Susan Laruche, Rafeeque Bhadelia Jan 2014

Three‐Dimensional Brain Mri For Dbs Patients Within Ultra‐Low Radiofrequency Power Limits, Subhendra N. Sarkar, Efstathios Papavassiliou, David Hackney, David Alsop, Ananth Madhuranthakam, Ludy Shih, Reed Busse, Susan Laruche, Rafeeque Bhadelia

Publications and Research

Background: For patients with deep brain stimulators (DBS), local absorbed radiofrequency (RF) power is unknown and is much higher than what the system estimates. We developed a comprehensive, highquality brain magnetic resonance imaging (MRI) protocol for DBS patients utilizing three-dimensional (3D) magnetic resonance sequences at very low RF power. Methods: Six patients with DBS were imaged (10 sessions) using a transmit/receive head coil at 1.5 Tesla with modified 3D sequences within ultra-low specific absorption rate (SAR) limits (0.1 W/kg) using T2, fast fluid-attenuated inversion recovery (FLAIR) and T1- weighted image contrast. Tissue signal and tissue contrast from the low-SAR images …


An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson Jan 2014

An Investigation Of Nurbs-Based Deformable Image Registration, Travis J. Jacobson

Theses and Dissertations

Deformable image registration (DIR) is an essential tool in medical image processing. It provides a means to combine image datasets, allowing for intra-subject, inter-subject, multi-modality, and multi-instance analysis, as well as motion detection and compensation. One of the most popular DIR algorithms models the displacement vector field (DVF) as B-splines, a sum of piecewise polynomials with coefficients that enable local shape control. B-splines have many advantageous properties in the context of DIR, but they often struggle to adequately model steep local gradients and discontinuities. This dissertation addresses that limitation by proposing the replacement of conventional B-splines with a generalized formulation …