Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Conjugated Quantum Dots Inhibit The Amyloid Β (1–42) Fibrillation Process, Garima Thakur, Miodrag Micic, Yuehai Yang, Wenzhi Li, Dania Movia, Silvia Giordani, Hongzhou Zhou, Roger M. Levlanc Dec 2010

Conjugated Quantum Dots Inhibit The Amyloid Β (1–42) Fibrillation Process, Garima Thakur, Miodrag Micic, Yuehai Yang, Wenzhi Li, Dania Movia, Silvia Giordani, Hongzhou Zhou, Roger M. Levlanc

Department of Physics

Nanoparticles have enormous potential in diagnostic and therapeutic studies. We have demonstrated that the amyloid beta mixed with and conjugated to dihydrolipoic acid- (DHLA) capped CdSe/ZnS quantum dots (QDs) of size approximately 2.5 nm can be used to reduce the fibrillation process. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used as tools for analysis of fibrillation. There is a significant change in morphology of fibrils when amyloid β (1–42) (Aβ (1–42)) is mixed or conjugated to the QDs. The length and the width of the fibrils vary under modified conditions. Thioflavin T (ThT) fluorescence supports the decrease …


Dynamic Chemical Shift Imaging For Image-Guided Thermal Therapy, Brian A. Taylor Aug 2010

Dynamic Chemical Shift Imaging For Image-Guided Thermal Therapy, Brian A. Taylor

Dissertations & Theses (Open Access)

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by …


Characterization Of Optically Stimulated Luminescent Detectors In Photon & Proton Beams For Use In Anthropomorphic Phantoms, James R. Kerns Aug 2010

Characterization Of Optically Stimulated Luminescent Detectors In Photon & Proton Beams For Use In Anthropomorphic Phantoms, James R. Kerns

Dissertations & Theses (Open Access)

This study investigated characteristics of optically stimulated luminescent detectors (OSLDs) in protons, allowing comparison to thermoluminescent detectors, and to be implemented into the Radiological Physics Center’s (RPC) remote audit quality assurance program for protons, and for remote anthropomorphic phantom irradiations. The OSLDs used were aluminum oxide (Al2O3:C) nanoDots from Landauer, Inc. (Glenwood, Ill.) measuring 10x10x2 mm3. A square, 20(L)x20(W)x0.5(H) cm3 piece of solid water was fabricated with pockets to allow OSLDs and TLDs to be irradiated simultaneously and perpendicular to the beam. Irradiations were performed at 5cm depth in photons, and in the center of a 10 cm SOBP in …


Benchmarking And Implementation Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Scott E. Davidson Aug 2010

Benchmarking And Implementation Of A New Independent Monte Carlo Dose Calculation Quality Assurance Audit Tool For Clinical Trials, Scott E. Davidson

Dissertations & Theses (Open Access)

Introduction Commercial treatment planning systems employ a variety of dose calculation algorithms to plan and predict the dose distributions a patient receives during external beam radiation therapy. Traditionally, the Radiological Physics Center has relied on measurements to assure that institutions participating in the National Cancer Institute sponsored clinical trials administer radiation in doses that are clinically comparable to those of other participating institutions. To complement the effort of the RPC, an independent dose calculation tool needs to be developed that will enable a generic method to determine patient dose distributions in three dimensions and to perform retrospective analysis of radiation …


An Implantable Mosfet Dosimeter Modified To Act As A Fiducial Marker, Joseph S. Dick Aug 2010

An Implantable Mosfet Dosimeter Modified To Act As A Fiducial Marker, Joseph S. Dick

Dissertations & Theses (Open Access)

In external beam radiation therapy, it is imperative that the prescribed dose is administered to the correct location and in the correct amount. Though several ex vivo methods of quality assurance are currently employed to achieve this goal, verifying that the correct dose is received within the patient in situ is impossible without the capability of measuring dose inside the patient. Recently, a method of measuring dose delivered within the patient has been developed, an implantable MOSFET dosimeter. This dosimeter is implanted within the patient and records the dose received. Since the dosimeter is implanted in the patient, it could …


Thoracic Radiotherapy Treatment Planning With Cine Pet/Ct, Adam C. Riegel May 2010

Thoracic Radiotherapy Treatment Planning With Cine Pet/Ct, Adam C. Riegel

Dissertations & Theses (Open Access)

Purpose: Respiratory motion causes substantial uncertainty in radiotherapy treatment planning. Four-dimensional computed tomography (4D-CT) is a useful tool to image tumor motion during normal respiration. Treatment margins can be reduced by targeting the motion path of the tumor. The expense and complexity of 4D-CT, however, may be cost-prohibitive at some facilities. We developed an image processing technique to produce images from cine CT that contain significant motion information without 4D-CT. The purpose of this work was to compare cine CT and 4D-CT for the purposes of target delineation and dose calculation, and to explore the role of PET in target …


Application Of X-Ray Diffraction To Material Analysis And Medical Imaging, Wei Zhou Jan 2010

Application Of X-Ray Diffraction To Material Analysis And Medical Imaging, Wei Zhou

Legacy Theses & Dissertations (2009 - 2024)

Powder diffraction is commonly used to determine the structures of both inorganic and organic materials. The angle and intensity of the diffraction (also called coherent scatter) peak depends on the nanostructure of the material. When no x-ray optic is used, the peak width broadens, and hence the resolution worsens, as the sample area is increased. However, a small sample area gives low diffracted signal intensity, particularly for thin films and for organic materials, which have low diffraction cross sections. X-ray optics can be used in x-ray powder diffraction to increase the diffraction intensity, thus decreasing exposure times. For a small …