Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Selected Works

Ballistic imaging

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne Nov 2015

Fast-Framing Ballistic Imaging Of Velocity In An Aerated Spray, David Sedarsky, James Gord, Campbell Carter, Terrence R. Meyer, Mark Linne

Terrence R Meyer

We describe further development of ballistic imaging adapted for the liquid core of an atomizing spray. To fully understand spray breakup dynamics, one must measure the velocity and acceleration vectors that describe the forces active in primary breakup. This information is inaccessible to most optical diagnostics, as the signal is occluded by strong scattering in the medium. Ballistic imaging mitigates this scattering noise, resolving clean shadowgram-type images of structures within the dense spray region. We demonstrate that velocity data can be extracted from ballistic images of a spray relevant to fuel-injection applications, by implementing a simple, targeted correlation method for …


Velocity Imaging For The Liquid–Gas Interface In The Near Field Of An Atomizing Spray: Proof Of Concept, David L. Sedarsky, Megan E. Paciaroni, Mark A. Linne, James R. Gord, Terrence R. Meyer Mar 2006

Velocity Imaging For The Liquid–Gas Interface In The Near Field Of An Atomizing Spray: Proof Of Concept, David L. Sedarsky, Megan E. Paciaroni, Mark A. Linne, James R. Gord, Terrence R. Meyer

Terrence R Meyer

We describe adaptation of ballistic imaging for the liquid core of an atomizing spray. To describe unambiguously the forces that act to break apart the liquid core in a spray, one must directly measure the force vectors themselves. It would be invaluable, therefore, to obtain velocity and acceleration data at the liquid-gas interface. We employ double-image ballistic imaging to extract velocity information through the application of image analysis algorithms. This method is shown to be effective for liquid phase droplet features within the resolution limit of the imaging system. In light of these results, it is clear that a three- …