Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu Jan 2021

Electroosmotic Flow Of Viscoelastic Fluid Through A Constriction Microchannel, Jianyu Ji, Shizhi Qian, Zhaohui Liu

Mechanical & Aerospace Engineering Faculty Publications

Electroosmotic flow (EOF) has been widely used in various biochemical microfluidic applications, many of which use viscoelastic non-Newtonian fluid. This study numerically investigates the EOF of viscoelastic fluid through a 10:1 constriction microfluidic channel connecting two reservoirs on either side. The flow is modelled by the Oldroyd-B (OB) model coupled with the Poisson–Boltzmann model. EOF of polyacrylamide (PAA) solution is studied as a function of the PAA concentration and the applied electric field. In contrast to steady EOF of Newtonian fluid, the EOF of PAA solution becomes unstable when the applied electric field (PAA concentration) exceeds a critical value for …


Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian Jan 2007

Modeling Redox-Based Magnetohydrodynamics In Three-Dimensional Microfluidic Channels, Hussameddine S. Kabbani, Aihua Wang, Xiaobing Luo, Shizhi Qian

Mechanical Engineering Faculty Research

RedOx-based magnetohydrodynamic MHD[1] flows in three-dimensional microfluidic channels are investigated theoretically with a coupled mathematical model consisting of the Nernst-Planck equations for the concentrations of ionic species, the local electroneutrality condition for the electric potential, and the Navier-Stokes equations for the flow field. A potential difference is externally applied across two planar electrodes positioned along the opposing walls of a microchannel that is filled with a dilute RedOx electrolyte solution, and a Faradaic current transmitted through the solution results. The entire device is positioned under a magnetic field which can be provided by either a permanent magnet or an electromagnet. …