Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 49

Full-Text Articles in Physics

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev Jan 2023

Machine-Assisted Discovery Of Integrable Symplectic Mappings, T. Zolkin, Y. Kharkov, S. Nagaitsev

Physics Faculty Publications

We present a new automated method for finding integrable symplectic maps of the plane. These dynamical systems possess a hidden symmetry associated with an existence of conserved quantities, i.e., integrals of motion. The core idea of the algorithm is based on the knowledge that the evolution of an integrable system in the phase space is restricted to a lower-dimensional submanifold. Limiting ourselves to polygon invariants of motion, we analyze the shape of individual trajectories thus successfully distinguishing integrable motion from chaotic cases. For example, our method rediscovers some of the famous McMillan-Suris integrable mappings and ultradiscrete Painlevé equations. In total, …


Algebraic Tunnelling, Gaurab Sedhain Jan 2023

Algebraic Tunnelling, Gaurab Sedhain

2023 REYES Proceedings

We study the quantum phenomenon of tunnelling in the framework of algebraic quantum theory, motivated by the tunnelling aspects of false vacuum decay. We see that resolvent C*-algebra, proposed relatively recently by Buchholz and Grundling rather than Weyl algebra provides an appropriate framework for treating the dynamics of non-free quantum mechanical system as an algebraic automorphism. At the end, we propose to investigate false vacuum decay in algebraic quantum field theoretic setting in terms of the two-point correlation function which gives us the tunneling probability, with the corresponding C*-algebraic construction.


Oscillating Icebergs, John Adam Jan 2023

Oscillating Icebergs, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


Another Angle On Perspective, John Adam Jan 2023

Another Angle On Perspective, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu Apr 2022

A Super Fast Algorithm For Estimating Sample Entropy, Weifeng Liu, Ying Jiang, Yuesheng Xu

Mathematics & Statistics Faculty Publications

: Sample entropy, an approximation of the Kolmogorov entropy, was proposed to characterize complexity of a time series, which is essentially defined as − log(B/A), where B denotes the number of matched template pairs with length m and A denotes the number of matched template pairs with m + 1, for a predetermined positive integer m. It has been widely used to analyze physiological signals. As computing sample entropy is time consuming, the box-assisted, bucket-assisted, x-sort, assisted sliding box, and kd-tree-based algorithms were proposed to accelerate its computation. These algorithms require O(N2) or …


Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam Jan 2022

Rock Paintings: Solutions For Fermi Questions, September 2022, John Adam

Mathematics & Statistics Faculty Publications

No abstract provided.


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng Jan 2021

Numerical Simulations Of Capsule Deformation Using A Dual Time-Stepping Lattice Boltzmann Method, Charles Armstrong, Yan Peng

Mathematics & Statistics Faculty Publications

In this work a quasisteady, dual time-stepping lattice Boltzmann method is proposed for simulation of capsule deformation. At each time step the steady-state lattice Boltzmann equation is solved using the full approximation storage multigrid scheme for nonlinear equations. The capsule membrane is modeled as an infinitely thin shell suspended in an ambient fluid domain with the fluid structure interaction computed using the immersed boundary method. A finite element method is used to compute the elastic forces exerted by the capsule membrane. Results for a wide range of parameters and initial configurations are presented. The proposed method is found to reduce …


Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian Jan 2018

Numerical Simulation For A Rising Bubble Interacting With A Solid Wall: Impact, Bounce, And Thin Film Dynamics, Changjuan Zhang, Jie Li, Li-Shi Luo, Tiezheng Qian

Mathematics & Statistics Faculty Publications

Using an arbitrary Lagrangian-Eulerian method on an adaptive moving unstructured mesh, we carry out numerical simulations for a rising bubble interacting with a solid wall. Driven by the buoyancy force, the axisymmetric bubble rises in a viscous liquid toward a horizontal wall, with impact on and possible bounce from the wall. First, our simulation is quantitatively validated through a detailed comparison between numerical results and experimental data. We then investigate the bubble dynamics which exhibits four different behaviors depending on the competition among the inertial, viscous, gravitational, and capillary forces. A phase diagram for bubble dynamics has been produced using …


Shape Resonances Of The Transverse Magnetic Mode In A Spherically Stratified Medium, Umaporn Nuntaplook, John A. Adam Jan 2018

Shape Resonances Of The Transverse Magnetic Mode In A Spherically Stratified Medium, Umaporn Nuntaplook, John A. Adam

Mathematics & Statistics Faculty Publications

Although morphology-dependent resonances (MDRs) have been studied for decades, it is interesting to note that TM resonances have not been as widely investigated as those of the TE mode. Nevertheless, the formers are also worthy of additional study. Even though the TE and TM mode resonances can be generated using the same technique, their properties (such as the additional sharp peak in the source function at the particle surface) are quite distinct. We present the derivation of the resonance formulations for TM mode for both increasing and decreasing piecewise-constant refractive index profiles in a two-layer model of a sphere embedded …


Fast Multipole Method Using Cartesian Tensor In Beam Dynamic Simulation, He Zhang, He Huang, Rui Li, Jie Chen, Li-Shi Luo Jan 2017

Fast Multipole Method Using Cartesian Tensor In Beam Dynamic Simulation, He Zhang, He Huang, Rui Li, Jie Chen, Li-Shi Luo

Mathematics & Statistics Faculty Publications

The fast multipole method (FMM) using traceless totally symmetric Cartesian tensor to calculate the Coulomb interaction between charged particles will be presented. The Cartesian tensor based FMM can be generalized to treat other non-oscillating interactions with the help of the differential algebra or the truncated power series algebra. Issues on implementation of the FMM in beam dynamic simulations are also discussed. © 2017 Author(s).


Simulation Study On Jleic High Energy Bunched Electron Cooling, H. Zhang, Y. Roblin, Y. Zhang, Ya. Derbenev, S. Benson, R. Li, J. Chen, H. Huang, L. Luo Jan 2017

Simulation Study On Jleic High Energy Bunched Electron Cooling, H. Zhang, Y. Roblin, Y. Zhang, Ya. Derbenev, S. Benson, R. Li, J. Chen, H. Huang, L. Luo

Mathematics & Statistics Faculty Publications

In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during the collision at the collider ring. Different with other electron coolers using DC electron beam, the proposed electron cooler at the JLEIC ion collider ring uses high energy bunched electron beam, provided by an ERL. In this paper, we report some recent simulation study on how the electron cooling rate will be affected by the bunched electron beam properties, such as …


Section Abstracts: Astronomy, Mathematics And Physics Apr 2016

Section Abstracts: Astronomy, Mathematics And Physics

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics, and Physics Section for the 94th Annual Virginia Academy of Science Meeting, May 18-20, 2016, at University of Mary Washington, Fredericksburg, VA.


Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo Jan 2016

Development Of The Electron Cooling Simulation Program For Jleic, H. Zhang, J. Chen, R. Li, Y. Zhang, H. Huang, L. Luo

Mathematics & Statistics Faculty Publications

In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked …


Section Abstracts: Astronomy, Mathematics And Physics With Material Science May 2015

Section Abstracts: Astronomy, Mathematics And Physics With Material Science

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics, and Physics with Material Science Section for the 93rd Annual Meeting of the Virginia Academy of Science, May 21-23, 2015, James Madison University, Richmond, Virginia


Section Abstracts: Astronomy, Mathematics, And Physics With Materials Science Apr 2014

Section Abstracts: Astronomy, Mathematics, And Physics With Materials Science

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics, and Physics with Materials Science Section for the 92nd Annual Meeting of the Virginia Academy of Science, May 13-15, 2014, Virginia Commonwealth University, Richmond, Virginia


Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou Jan 2014

Rheological Signatures In Limit Cycle Behaviour Of Dilute, Active, Polar Liquid Crystalline Polymers In Steady Shear, M. Gregory Forest, Panon Phuworawong, Qi Wang, Ruhai Zhou

Mathematics & Statistics Faculty Publications

We consider the dilute regime of active suspensions of liquid crystalline polymers (LCPs), addressing issues motivated by our kinetic model and simulations in Forest et al. (Forest et al. 2013 Soft Matter 9, 5207-5222 (doi:10.1039/c3sm27736d)). In particular, we report unsteady two-dimensional heterogeneous flow-orientation attractors for pusher nanorod swimmers at dilute concentrations where passive LCP equilibria are isotropic. These numerical limit cycles are analogous to longwave (homogeneous) tumbling and kayaking limit cycles and two-dimensional heterogeneous unsteady attractors of passive LCPs in weak imposed shear, yet these states arise exclusively at semi-dilute concentrations where stable equilibria are nematic. The results in Forest …


Scalar Wave Scattering By Two-Layer Radial Inhomogeneities, Umaporn Nuntaplook, John Adam Jan 2014

Scalar Wave Scattering By Two-Layer Radial Inhomogeneities, Umaporn Nuntaplook, John Adam

Mathematics & Statistics Faculty Publications

It is shown that the iteration technique gives a better approximation for the problem with long wavelengths.


Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu Jan 2014

Length Effects Of A Built-In Flapping Flat Plate On The Flow Over A Traveling Wavy Foil, Nansheng Liu, Yan Peng, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over the traveling wavy foil with a built-in rigid flapping plate at its trailing edge has been numerically studied using the multi-relaxation-time Lattice Boltzmann method and immersed boundary method. The effect of the plate length on the propulsive performance such as the thrust force, energy consumption, and propeller efficiency has been investigated. Three modes (body force dominated, body and tail force competing and tail force dominated modes) have been identified that are associated with different hydrodynamics and flow structures. It is revealed that there exists a better performance plate length region and, within this region, a high propeller efficiency …


Network-Based Assessments Of Percolation-Induced Current Distributions In Sheared Rod Macromolecular Dispersions, Feng Shi, Simi Wang, M. Gregory Forest, Peter J. Mucha, Ruhai Zhou Jan 2014

Network-Based Assessments Of Percolation-Induced Current Distributions In Sheared Rod Macromolecular Dispersions, Feng Shi, Simi Wang, M. Gregory Forest, Peter J. Mucha, Ruhai Zhou

Mathematics & Statistics Faculty Publications

Conducting high-aspect-ratio rods with 1-10 nm-scale diameters dispersed in poorly conducting matrices at extremely low, O(1%), volume fractions induce dramatic gains in bulk conductivity at rod percolation threshold. Experimentally [Nan, Shen, and Ma, Annu. Rev. Mater. Res., 40 (2010), pp. 131-151], bulk conductivity abandons the prepercolation, linear scaling with volume fraction that follows from homogenization theory [Zheng et al., Adv. Funct. Mater., 15 (2005), pp. 627-638], and then postpercolation jumps orders of magnitude to approach that of the pure rod macromolecular phase as predicted by classical percolation theory [Stauffer and Aharony, Introduction to Percolation Theory, CRC …


Topics In Electromagnetic, Acoustic, And Potential Scattering Theory, Umaporn Nuntaplook Jul 2013

Topics In Electromagnetic, Acoustic, And Potential Scattering Theory, Umaporn Nuntaplook

Mathematics & Statistics Theses & Dissertations

With recent renewed interest in the classical topics of both acoustic and electromagnetic aspects for nano-technology, transformation optics, fiber optics, metamaterials with negative refractive indices, cloaking and invisibility, the topic of time-independent scattering theory in quantum mechanics is becoming a useful field to re-examine in the above contexts. One of the key areas of electromagnetic theory scattering of plane electromagnetic waves — is based on the properties of the refractive indices in the various media. It transpires that the refractive index of a medium and the potential in quantum scattering theory are intimately related. In many cases, understanding such scattering …


Section Abstracts: Astronomy, Mathematics And Physics May 2013

Section Abstracts: Astronomy, Mathematics And Physics

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics and Physics Section for the 91st Annual Virginia Journal of Science Meeting, May 2013


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2012

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts of the Astronomy, Mathematics, and Physics with Material Science Section for the 90th Annual Meeting of the Virginia Academy of Science, May 23-25, 2012, Norfolk State University, Norfolk, Virginia


Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu Jan 2012

Flow Over A Traveling Wavy Foil With A Passively Flapping Flat Plate, Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu

Mathematics & Statistics Faculty Publications

Flow over a traveling wavy foil with a passively flapping flat plate has been investigated using a multiblock lattice Boltzmann equation and the immersed boundary method. The foil undergoes prescribed undulations in the lateral direction and the rigid flat plate has passive motion determined by the fluid structure interaction. This simplified model is used to study the effect of the fish caudal fin and its flexibility on the locomotion of swimming animals. The flexibility of the caudal fin is modeled by a torsion spring acting about the pivot at the conjuncture of the wavy foil and the flat plate. The …


Numerical Methods For Fluid-Structure Interaction - A Review, Gene Hou, Jin Wang, Anita Layton Jan 2012

Numerical Methods For Fluid-Structure Interaction - A Review, Gene Hou, Jin Wang, Anita Layton

Mechanical & Aerospace Engineering Faculty Publications

The interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical-methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions


Section Abstracts: Astronomy, Mathematics And Physics With Materials Science Apr 2011

Section Abstracts: Astronomy, Mathematics And Physics With Materials Science

Virginia Journal of Science

Abstracts for the Astronomy, Mathematics, and Physics with Materials Science Section for the 89th Annual Meeting of the Virginia Academy of Science, May 25-27, 2011, University of Richmond, Richmond VA.


Epistemic Strategies For Solving Two-Dimensional Physics Problems, Mary Elyse Hing-Hickman Apr 2011

Epistemic Strategies For Solving Two-Dimensional Physics Problems, Mary Elyse Hing-Hickman

Physics Theses & Dissertations

An epistemic strategy is one in which a person takes a piece of knowledge and uses it to create new knowledge. Students in algebra and calculus based physics courses use epistemic strategies to solve physics problems. It is important to map how students use these epistemic strategies to solve physics problems in order to provide insight into the problem solving process.

In this thesis three questions were addressed: (1) What epistemic strategies do students use when solving two-dimensional physics problems that require vector algebra? (2) Do vector preconceptions in kinematics and Newtonian mechanics hinder a student's ability to apply the …


Numerics Of The Lattice Boltzmann Method: Effects Of Collision Models On The Lattice Boltzmann Simulations, Li-Shi Luo, Wei Liao, Xingwang Chen, Yan Peng, Wei Zhang Jan 2011

Numerics Of The Lattice Boltzmann Method: Effects Of Collision Models On The Lattice Boltzmann Simulations, Li-Shi Luo, Wei Liao, Xingwang Chen, Yan Peng, Wei Zhang

Mathematics & Statistics Faculty Publications

We conduct a comparative study to evaluate several lattice Boltzmann (LB) models for solving the near incompressible Navier-Stokes equations, including the lattice Boltzmann equation with the multiple-relaxation-time (MRT), the two-relaxation-time (TRT), the single-relaxation-time (SRT) collision models, and the entropic lattice Boltzmann equation (ELBE). The lid-driven square cavity flow in two dimensions is used as a benchmark test. Our results demonstrate that the ELBE does not improve the numerical stability of the SRT or the lattice Bhatnagar-Gross-Krook (LBGK) model. Our results also show that the MRT and TRT LB models are superior to the ELBE and LBGK models in terms of …


Section Abstracts: Astronomy, Mathematics, And Physics & Materials Science Apr 2010

Section Abstracts: Astronomy, Mathematics, And Physics & Materials Science

Virginia Journal of Science

Abstracts of papers of the Astronomy, Mathematics, and Physics (Including Materials Science) Section for the 88th Annual Meeting of the Virginia Academy of Science, May 20-21, 2010, James Madison University, Harrisonburg, VA.


Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo Jan 2010

Effects Of Multitemperature Nonequilibrium On Compressible Homogeneous Turbulence, Wei Liao, Yan Peng, Li-Shi Luo

Mathematics & Statistics Faculty Publications

We study the effects of the rotational-translational energy exchange on the compressible decaying homogeneous isotropic turbulence (DHIT) in three dimensions through direct numerical simulations. We use the gas-kinetic scheme coupled with multitemperature nonequilibrium based on the Jeans-Landau-Teller model. We investigate the effects of the relaxation time of rotational temperature, ZR, and the initial ratio of the rotational and translational temperatures, TR0 / TL0, on the dynamics of various turbulence statistics including the kinetic energy K (t), the dissipation rate ε (t), the energy spectrum E (k,t), the root mean square of the velocity divergence θ′ …