Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda May 2022

Design, Fabrication, And Characterization Of An Array Of Graphene Based Variable Capacitors, Millicent Nkirote Gikunda

Graduate Theses and Dissertations

Since it was first isolated and characterized in 2004, graphene has shown the potential for a technological revolution. This is due to its amazing physical properties such as high electrical conductivity, high thermal conductivity, and extreme flexibility. Freestanding graphene membranes naturally possesses an intrinsic rippled structure, and these ripples are in constant random motion even room temperatures. Occasionally, the ripples undergo spontaneous buckling (change of curvature from concave to convex and vice versa) and the potential energy associated with this is a double well potential. This movement of graphene is a potential source of vibrational energy.

In this dissertation, we …


Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas Jan 2020

Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas

Electrical & Computer Engineering Faculty Publications

This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found …


Thermoelectric Porous Mof Based Hybrid Materials, Engelbert Redel, Helmut Baumgart Jan 2020

Thermoelectric Porous Mof Based Hybrid Materials, Engelbert Redel, Helmut Baumgart

Electrical & Computer Engineering Faculty Publications

Porous hybrid materials and MOF (Metal-Organic-Framework) films represent modern designer materials that exhibit many requirements of a near ideal and tunable future thermoelectric (TE) material. In contrast to traditional semiconducting bulk TE materials, porous hybrid MOF templates can be used to overcome some of the constraints of physics in bulk TE materials. These porous hybrid systems are amenable for simulation and modeling to design novel optimized electron-crystal phonon-glass materials with potentially very high ZT (figure of merit) numbers. Porous MOF and hybrid materials possess an ultra-low thermal conductivity, which can be further modulated by phonon engineering within their complex porous …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson Aug 2013

Characterization Of Samples For Optimization Of Infrared Stray Light Coatings, Carey L. Baxter, Rebecca Salvemini, Zaheer A. Ali, Patrick Waddell, Greg Perryman, Bob Thompson

STAR Program Research Presentations

NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) is a converted 747SP that houses a 2.5 m telescope that observes the sky through an opening in the side of the aircraft. Because it flies at altitudes up to 45,000 feet, SOFIA gets 99.99% transmission in the infrared. Multiple science instruments mount one at a time on the telescope to interpret infrared and visible light from target sources. Ball Infrared Black (BIRB) currently coats everything that the optics sees inside the telescope assembly (TA) cavity in order to eliminate noise from the glow of background sky, aircraft exhaust, and other sources. A …