Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Theses/Dissertations

2020

Institution
Keyword
Publication

Articles 1 - 28 of 28

Full-Text Articles in Physics

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel Dec 2020

Treated Hfo2 Based Rram Devices With Ru, Tan, Tin As Top Electrode For In-Memory Computing Hardware, Yuvraj Dineshkumar Patel

Theses

The scalability and power efficiency of the conventional CMOS technology is steadily coming to a halt due to increasing problems and challenges in fabrication technology. Many non-volatile memory devices have emerged recently to meet the scaling challenges. Memory devices such as RRAMs or ReRAM (Resistive Random-Access Memory) have proved to be a promising candidate for analog in memory computing applications related to inference and learning in artificial intelligence. A RRAM cell has a MIM (Metal insulator metal) structure that exhibits reversible resistive switching on application of positive or negative voltage. But detailed studies on the power consumption, repeatability and retention …


Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney Dec 2020

Theory And Improved Methods For Probing The Cavitation To Fracture Transition, Christopher Barney

Doctoral Dissertations

A material is considered soft when its bulk modulus is significantly greater than its shear modulus. Rubbery polymers are a class of soft materials where resistance to extension is mainly entropic in nature. Polymeric soft solids differ from liquids due to the presence of a percolated network of strong bonds that resist deformation and flow on a given time scale. The incompressible nature, entropically driven elasticity, and molecular scale network structure of soft polymeric solids combine to impart unique mechanical behavior that often results in complex material responses to simple loading situations. An important example of this is cavitation in …


Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman Dec 2020

Thermo-Fluid Characterizations Of The Powder-Bed Fusion Additive Manufacturing Processes Using Laser And Electron Beam, M Shafiqur Rahman

University of New Orleans Theses and Dissertations

The powder-bed fusion (PBF) process is a subdivision of Additive Manufacturing (AM) technology where a heat source at a controlled speed selectively fuses regions of a powder-bed material to form three-dimensional (3-D) parts. Two of the most effective PBF processes are selective laser melting (SLM) and electron beam additive manufacturing (EBAM), which can fabricate full-density metallic parts in a layer-by-layer fashion. In this study, thermal behavior and melt-pool dynamics in the PBF process are investigated by developing 3-D multiphysics-based thermo-fluid models for both SLM and EBAM, containing Ti-6Al-4V alloy as a powder-bed material. The laser and electron beams are modeled …


Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek Dec 2020

Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek

Doctoral Dissertations

Permeated throughout the ocean floor and arctic permafrost, natural gas hydrates contain an estimated 3000 trillion cubic meters, over three times that of traditional shale deposits, of CH4 that is accessible for extraction. Gas hydrates are a crystal structure in which water molecules form a cage network, the host, through hydrogen bonds while trapping a guest molecule such as CH4 in the cavities. These compounds form naturally where the appropriate low temperature and high pressure conditions occur. A promising and tested method of methane recovery is through exchange with CO2, which energetically takes place of the …


Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch Dec 2020

Characterization Of Fiber Bragg Grating Based, Geometry-Dependent, Magnetostrictive Composite Sensors, Edward Lynch

Theses and Dissertations

Optical sensors based on geometry dependent magnetostrictive composite, having potential applications in current sensing and magnetic field sensing are modeled and evaluated experimentally with an emphasis on their thermal immunity from thermal disturbances. Two sensor geometries composed of a fiber Bragg grating (FBG) embedded in a shaped Terfenol-D/epoxy composite material, which were previously prototyped and tested for magnetic field response, were investigated. When sensing magnetic fields or currents, the primary function of the magnetostrictive composite geometry is to modulate the magnetic flux such that a magnetostrictive strain gradient is induced on the embedded FBG. Simulations and thermal experiments reveal the …


Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee Dec 2020

Static And Dynamical Properties Of Multiferroics, Sayed Omid Sayedaghaee

Graduate Theses and Dissertations

Since the silicon industrial revolution in the 1950s, a lot of effort was dedicated to the research and development activities focused on material and solid-state sciences. As a result, several cutting-edge technologies are emerging including the applications of functional materials in the design and enhancement of novel devices such as sensors, highly capable data storage media, actuators, transducers, and several other types of electronic tools. In the last two decades, a class of functional materials known as multiferroics has captured significant attention because of providing a huge potential for new designs due to possessing multiple ferroic order parameters at the …


Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith Dec 2020

Characterization Of A Digital Holography Diagnostic For In Situ Erosion Measurement Of Plasma-Facing Components In Fusion Devices, Cary Dean Smith

Doctoral Dissertations

Fusion energy devices, particularly tokamaks, face the challenge of interior surface damage occurring over time from the heat flux of the high-energy plasma they generate. The ability to monitor the rate of surface modification is therefore imperative, but to date no proven technique exists for real-time erosion measurement of planar regions of interest on plasma-facing components in fusion devices. In order to fill this diagnostic gap, a digital holography system has been established at ORNL [Oak Ridge National Laboratory] for the purpose of measuring the erosion effects of plasma-material interaction in situ.

The diagnostic has been designed with the …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh Nov 2020

Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh

USF Tampa Graduate Theses and Dissertations

Atomically thin two-dimensional (2D) materials have attracted a growing interest in the lastdecade from the fundamental point of view as well as their potential applications in functional devices. Due to their high surface-to-volume ratio, the physical properties of 2D materials are very sensitive to the environmental factor such as surrounding media and illumination conditions (e.g. light-mater interaction). In the first part of this dissertation I will present recent advances in developing laser-assisted methods to tune the physical properties of 2D transition metal dichalcogenides (TMDs). We demonstrate laser-assisted chemical modification ultrathin TMDs, locally replacing selenium by sulfur atoms. The photo-conversion process …


Electronic And Local Structures Of Pt-Based Bimetallic Alloy And Core-Shell Systems, Jiatang Chen Aug 2020

Electronic And Local Structures Of Pt-Based Bimetallic Alloy And Core-Shell Systems, Jiatang Chen

Electronic Thesis and Dissertation Repository

This thesis investigates the electronic structure of Pt for catalysis applications. The importance of the Pt 5d band is discussed in terms of the bonding capability of Pt. The oxygen reduction reaction in proton exchange membrane fuel cells is chosen as the catalytic reaction model to illustrate the effect of Pt 5d states on Pt-O interaction. Pt-based bimetallic systems are introduced as a solution for the high price and limited resources of Pt. Despite lower usage of Pt, the tuning capability to optimize the Pt 5d band in bimetallic catalysts is supposed to provide superior catalytic activity. Advanced synchrotron X-ray …


Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif Aug 2020

Performance Of Pld Grown Zno Thin Film As A Thin Film Transistor, Shahidul Asif

MSU Graduate Theses

The performance of ZnO thin film (grown in different parameters) as a thin film transistor (TFT) is the focus of this study. ZnO is renowned for being n-type semiconductor naturally which was utilized in fabricating a thin film transistor here. This thesis is compared the performance of ZnO thin film transistor by growing the thin film using pulsed laser deposition (PLD) on two slightly different substrates at different temperatures in an optimal 0.1 milli bar oxygen pressure which was later analyzed using other material characterization methods. The substrates were both Si (100) but had different resistivity due to different amount …


Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu Jul 2020

Nano- And Micro-Structured Temperature-Sensitive Hydrogels For Rapidly Responsive Devices, Qi Lu

Doctoral Dissertations

This thesis aims to extend the understanding and explore the application of temperature-responsive hydrogel systems by integrating microelectromechanical systems (MEMS). Stimuli-responsive hydrogel systems are immensely investigated and applied in numerous fields, and interfacing with micro- and nano-fabrication techniques will open up more possibilities. In Chapter 2, the first biologically relevant, in vitro cell stretching device based on hydrogel surface instability was developed. This dynamic platform is constructed by embedding micro-heater devices under temperature-responsive surface-attached hydrogels. The fast and regional temperature change actuates the stretching and relaxation of the seeded human artery smooth muscle cell (HASMC) via controllable surface creasing instability. …


Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez Jun 2020

Van Der Waals Epitaxy Of Ultrathin Early Transition Metal (Ti & V) (Di)Selenides: Charge And Magnetic Order In The Ultrathin Limit, Manuel Bonilla Lopez

USF Tampa Graduate Theses and Dissertations

Since the isolation of graphene in 2004, two-dimensional (2D) layered materials, specially the transition metal dichalcogenides (TMDs), have attracted immense interest from theoreticians and experimentalist due to the diversity of properties presented in this family of materials. The main reason for the interest in such materials has been the observation of emergent properties as a consequence of the reduced dimensions, i.e. the monolayer regime. Initially the monolayer regime was obtained via the scotch-tape method. The implementation of exfoliation techniques was successful since layered 2D materials are composed of stacked layers held together by weak van der Walls forces that permits …


Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam May 2020

Modeling Single Microtubules As A Colloidal System To Measure The Harmonic Interactions Between Tubulin Dimers In Bovine Brain Derived Versus Cancer Cell Derived Microtubules, Arooj Aslam

Dissertations

The local properties of tubulin dimers dictate the properties of the larger microtubule assembly. In order to elucidate this connection, tubulin-tubulin interactions are be modeled as harmonic interactions to map the stiffness matrix along the length of the microtubule. The strength of the interactions are measured by imaging and tracking the movement of segments along the microtubule over time, and then performing a fourier transform to extract the natural vibrational frequencies. Using this method the first ever reported experimental phonon spectrum of the microtubule is reported. This method can also be applied to other biological materials, and opens new doors …


First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman May 2020

First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman

McKelvey School of Engineering Theses & Dissertations

Ceramic materials display a wide variety of valuable properties, such as ferroelectricity, superconductivity, and magnetic ordering, due to the partially covalent bonds which connect the cations and anions. While many breakthroughs have been made by mixing multiple cations on a sublattice, the equivalent mixed-anion ceramics have not received nearly as much attention, despite the key role the anion plays in the materials’ properties. There is great potential for functional ceramics design using anion engineering, which aims to tune the materials properties by adding and removing different types of anions in existing classes of ceramic materials. In this dissertation, I present …


Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami Apr 2020

Mid-Ir Optical Refrigeration And Radiation Balanced Lasers, Saeid Rostami

Optical Science and Engineering ETDs

This dissertation reports recent advances in mid-infrared (mid-IR) optical refrigeration and Radiation Balanced Lasers (RBLs). The first demonstration of optical refrigeration in Ho:YLF and Tm:YLF crystals as promising mid-IR laser cooling candidates is reported. Room temperature laser cooling efficiency of Tm- and Ho-doped crystals at different excitation polarization is measured and their external quantum efficiency and background absorption are extracted. Complete characterization of laser cooling samples is obtained via performing detailed low-temperature spectroscopic analysis, and their minimum achievable temperature as well as conditions to achieve laser cooling efficiency enhancement in mid-IR are investigated. By developing a Thulium-doped fiber amplifier, seeded …


Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii Apr 2020

Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii

USF Tampa Graduate Theses and Dissertations

2D layered materials are becoming an important area of research due to their exceptional electrical and optical properties. Specifically, 2D layered monochalcogenides are known for their high carrier motilities, whereas layered metal halides have been shown to have noteworthy photoresponsivity. Despite the assortment of 2D layered materials, the search for reliable and scalable synthesis methods is still a challenge in this family of materials. Often a certain growth technique will compromise a desirable trait needed for further fabrication, such as the quality of the crystal or its coverage on a substrate. In this study, two growth techniques that incorporate changeable …


The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate Mar 2020

The Design Of A Continuous Wave Molecular Nitrogen Stimulated Raman Laser In The Visible Spectrum, Timothy J. Bate

Theses and Dissertations

Hollow-core photonic crystal fibers (HCPCFs) shows promise as a hybrid laser with higher nonlinear process limits and small beam size over long gain lengths. This work focuses on the design of a CW molecular nitrogen (N2) stimulated Raman laser. N2 offers Raman gains scaling up to 900 amg, scaling higher than H2. The cavity experiment showed the need to include Rayleigh scattering in the high pressure required for N2 Raman lasing. Even at relatively low pressure ssuch as 1,500 psi, high conversion percentages should be found if the fiber length is chosen based on …


Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce Mar 2020

Cn And C2 Spectroscopy On The Pulsed Ablation Of Graphite In The Visible Spectrum, Brandon A. Pierce

Theses and Dissertations

An experimental study was conducted on the nanosecond pulsed laser ablation of graphite using a KrF laser at a fluence of 3.8 J/cm2 in Air, Ar, He, and N2. Optical emissions spectroscopy revealed the C2 Swan sequences and the CN Violet sequences. A spectroscopic model was developed to extract the molecular rotational and vibrational temperatures of each excited species for t=0.5-10 microseconds after laser irradiation. The rovibrational temperatures were found to vary with background gas for the CN Violet; however, only the vibrational temperature varied between He and the other background gases for C2 Swan. …


Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis Feb 2020

Ii-Vi Type-Ii Quantum Dot Superlattices For Novel Applications, Vasilios Deligiannakis

Dissertations, Theses, and Capstone Projects

In this thesis, we discuss the growth procedure and the characterization results obtained for epitaxially grown submonolayer type-II quantum dot superlattices made of II-VI semiconductors. We have investigated the spin dynamics of ZnSe layers with embedded type-II ZnTe quantum dots and the use of (Zn)CdTe/ZnCdSe QDs for intermediate band solar cell (IBSC). Samples with a higher quantum dot density exhibit longer electron spin lifetimes, up to ~1 ns at low temperatures. Tellurium isoelectronic centers, which form in the ZnSe spacer regions as a result of the growth conditions, were also probed. A new growth sequence for type-II (Zn)CdTe/ZnCdSe (QDs) was …


Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup Jan 2020

Tunable Refractive Index Through Spatially Modified Nanoparticle Films For Long-Range Spr Biosensing Applications, Stephen Joshua Binderup

Graduate Research Theses & Dissertations

Despite optics and refraction being among the oldest scientific principles, material limitations have prevented scientists from taking full advantage of the potential this technology holds. Indeed, films with designer optical properties have potential for use in exotic cloaking architectures, advanced waveguides, and precise optical biosensors. This thesis focuses on the fabrication methodology for making thin films with refractive index tuned to a desired value through self-assembly of amorphous nanoparticle films made of organosilicate materials. The inclusion of a slowly evaporating polymer phase along with the organosilicate nanoparticles results in nanopores formed within the film, which effectively reduce the film’s refractive …


Shape Tuning Of Silicon Nano-Tip Arrays Through Reactive Ion Etching For Cold Field Emission, Giridhar Tulasi Ram Sankabathula Jan 2020

Shape Tuning Of Silicon Nano-Tip Arrays Through Reactive Ion Etching For Cold Field Emission, Giridhar Tulasi Ram Sankabathula

Graduate Research Theses & Dissertations

Large area silicon nano-tip arrays have been predominantly used as cold cathode electron sources in the wide range of field emission applications. Various fabrication methodologies have been developed over the decades to obtain sharp-pointed field emitters. In this thesis, we mainly emphasized on reproducing high aspect ratio field emitters and to study their surface topographical changes encountered through reactive ion etching. A discrete set of high-density field emitters have been fabricated over the large area surfaces through a three-step nanofabrication process. The surface curvatures of the obtained emitter tips are finely tuned with multiple oxidation cycles to achieve a tip’s …


Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado Jan 2020

Development Of Software Tools And Experimental In Situ Electron Spin Resonance For Characterizing The Magnetic And Electrocatalytic Properties Of Transition Metal Chalcogenide Crystals, Jose Armando Delgado

Open Access Theses & Dissertations

Studying the magnetic properties and crystal defects of transition metal chalcogenide crystals is of paramount importance for utilizing them for next generation spintronics devices and hydrogen evolution reaction catalysts. Hydrothermally grown transition metal chalcogenide nanocrystals (MoS2, Ru2S3, Rh2S3, Co2S8) were chosen as catalysts for the hydrogen evolution reaction due to their low dimensionality and previous utilization as catalysts for hydrodesulfurization. The relationship between crystal defect sites and catalytic activity must be discerned to maximize the efficiency of hydrogen production during the hydrogen evolution reaction. ESR spectroscopy was utilized as a spin sensitive technique to study the defects and local changes …


Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka Jan 2020

Magnetism In Γ-Fesi2 Nanostructures: A First Principles Study, Sahil Dhoka

Dissertations, Master's Theses and Master's Reports

First-principles calculations are performed on γ-FeSi2 nanostructures grown on Si (111) and (001) substrate. An attempt to explain the origin of emergent magnetic properties of the metastable gamma phase of iron di-silicide (γ-FeSi2) is made, which show ferromagnetic behavior on nanoscale, unlike its possible bulk form. Many papers try to explain this magnetism from factors like bulk, epitaxial strain, interface, surface, edges, and corners but doesn’t provide an analytical study for these explanations. Density functional theory is used to analyze the magnetic effects of these factors. The results for the epitaxial structures show no magnetic behavior for …


The Synthesis Of Pb2sr2sm1-Xcaxcu3o8 And Characterization Of Its Structural And Superconducting Properties., Deblina Das Jan 2020

The Synthesis Of Pb2sr2sm1-Xcaxcu3o8 And Characterization Of Its Structural And Superconducting Properties., Deblina Das

Graduate Research Theses & Dissertations

Superconducting lead-based cuprate materials of the 2213 structural type, Pb2Sr2MCu3O8 (M=Sm1-xCax, Y1-xCax, Er1-xCax and Yb1-xCax), were synthesized and characterized using x-ray powder diffraction and the Rietveld structural refinements method. Pb2Sr2Sm1-xCaxCu3O8 single crystals were grown by an optimized flux method using various combinations of PbO/PbF2 solvents. Samples with different Sm/Ca ratios were investigated for their superconducting properties. Magnetic measurements reveal the presence of a transition at 120K. Preliminary x-ray diffuse scattering experiment at the Advanced Photon Source of Argonne National Laboratory demonstrates the high quality of one of our crystals and the presence of rod-like diffuse scattering connecting the Bragg peaks …


Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell Jan 2020

Gravity-Drawing Flexible Silicone Filaments As Fiber Optics And Model Foldamers, Katherine Snell

CMC Senior Theses

Here, we present a method of gravity-drawing polydimethylsiloxane (PDMS) silicone fibers with application as fiber optics and as model foldamers. Beginning as a viscous liquid, PDMS is cured using heat until its measured viscosity reaches 4000 mPa•s. The semi-cured elastomer is then extruded through a tube furnace to produce thin (diameters on the order of hundred micrometers) filaments with scalable lengths. PDMS is biocompatible, gas-permeable, flexible, and hydrophobic. Additionally, the PDMS surface hydrophobicity can be modified via UV exposure, O2 plasma, and corona discharge. We demonstrate the patternibility (i.e patterns of hydrophobicity) of PDMS fibers, adding complexity to potential foldamer …


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …