Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Duane D. Johnson

Electronic structure

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physics

Effects Of Chemical And Magnetic Disorder In Fe0.50mn0.50, Duane D. Johnson, F. J. Pinski, G. M. Stocks Jan 1988

Effects Of Chemical And Magnetic Disorder In Fe0.50mn0.50, Duane D. Johnson, F. J. Pinski, G. M. Stocks

Duane D. Johnson

We present the results of first‐principles calculations of the total energy and spin‐polarized electronic structure of disordered fcc Fe0.50Mn0.50. These self‐consistent calculations were performed using the Korringa–Kohn–Rostoker method and the coherent‐potential approximation (KKR‐CPA), using the local‐spin‐density approximation to treat exchange and correlation. We use a lattice constant of a=6.80 a.u.; information about stability can be inferred from calculated pressure and energy. The moments on the Fe and Mn sites are large but antiparallel to each other, resulting in a small net magnetization. A comparison of the electronic structure is made for fcc Fe, Mn, and FeMn in both the ferromagnetic …


Self‐Consistent Electronic Structure Of Disordered Fe0.65ni0.35, Duane D. Johnson, F. J. Pinski, G. M. Stocks Dec 984

Self‐Consistent Electronic Structure Of Disordered Fe0.65ni0.35, Duane D. Johnson, F. J. Pinski, G. M. Stocks

Duane D. Johnson

We present the results of the first a b i n i t i o calculation of the electronic structure of the disordered alloy Fe0.65Ni0.35. The calculation is based on the multiple‐scattering coherent‐potential approach (KKR‐CPA) and is fully self‐consistent and spin polarized. Magnetic effects are included within local‐spin‐density functional theory using the exchange‐correlation function of Vosko–Wilk–Nusair. The most striking feature of the calculation is that electrons of different spins experience different degrees of disorder. The minority spin electrons see a very large disorder, whereas the majority spin electrons see little disorder. Consequently, the minority spin density of states is smooth …