Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover Aug 2022

Quantum-Mechanical Evaluation Of Defects In Uranium-Bearing Materials, Megan Hoover

All Dissertations

Quantum-mechanical calculations using density functional theory with the generalized gradient approximation were employed to investigate the effects dopants have on the uranium dioxide (UO2) structure. Uraninite is a common U4+ mineral in the Earth's crust and an important material used to produce energy and medical isotopes. Though the incorporation mechanism remains unclear, divalent cations are known to incorporate into the uranium dioxide system. Three charge-balancing mechanisms were evaluated to achieve a net neutral system, including the substitution of (1) a divalent cation for a tetravalent uranium atom and oxygen atom; (2) two divalent cations for a tetravalent …


Controlled Manipulation Of Droplets On Fibers: Fundamentals And Printing Applications, Yueming Sun Aug 2022

Controlled Manipulation Of Droplets On Fibers: Fundamentals And Printing Applications, Yueming Sun

All Dissertations

In this dissertation, the drop interactions with a single fiber is discussed under an application angle for the development on new Drop-on-Demand (DOD) printhead using a fiber-in-a-tube platform[1] to print highly viscous materials[2]. To control the drop formation and manipulation on fiber, one needs to know how the fiber wetting properties and the fiber diameter influence drop formation. And then, one needs to know the effects of fiber movement in the device on drop formation. These two questions constitute the main theme of this dissertation.

Before this study, it was accepted that the liquids could not form axisymmetric droplets if …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar May 2022

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …


Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster May 2022

Extractive Membranes For The Detection And Screening Of Waterborne Plutonium, James Foster

All Dissertations

The development of rapid screening tools for special nuclear materials remains a crucial focus for nonproliferation efforts. Traditional approaches for the analysis of trace-level Pu isotopes in water requires tedious and time-consuming sample preparation steps that do not lend well to expeditious screening. Therefore, a novel analytical method that combines both Pu concentration and source preparation into a single detection system would make for an invaluable tool for nuclear security applications. Extractive membranes absorbers can help to fulfill this role as they are capable of concentrating Pu to detectable limits while subsequently serving as alpha spectrometry sample sources. In Chapter …