Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Air Force Institute of Technology

Micromechanics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Design And Performance Evaluation Of A Gas Chromatograph Micromachined In A Single Crystal Silicon Substrate, Rocky R. Reston Mar 1993

Design And Performance Evaluation Of A Gas Chromatograph Micromachined In A Single Crystal Silicon Substrate, Rocky R. Reston

Theses and Dissertations

This investigation designed and developed a miniature gas chromatograph (GC) using silicon micromachining techniques. The GC is composed of a miniature sample injector (10 µl sample loop); a 0.9 m long, rectangular-shaped (300 µm width and 10 micrometers height) capillary column coated with a 0.2 µm thick copper phthalocyanine (CuPc) stationary phase; and a dual-detector scheme incorporating a CuPc-coated chemiresistor and a 125 µm diameter thermal conductivity detector bead. Micromachining was employed to fabricate the sample injector interface, the GC column, and the dual-detector cavity. A novel processing technique was developed to sublime the CuPc stationary phase coating on the …