Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff Nov 2011

Thermodynamic Limit To Photonic-Plasmonic Light-Trapping In Thin Films On Metals, Eric A. Schiff

Physics - All Scholarship

We calculate the maximum optical absorptance enhancements in thin semiconductor films on metals due to structures that diffuse light and couple it to surface plasmon polaritons. The calculations can be used to estimate plasmonic effects on light-trapping in solar cells. The calculations are based on the statistical distribution of energy in the electromagnetic modes of the structure, which include surface plasmon polariton modes at the metal interface as well as the trapped waveguide modes in the film. The enhancement has the form 4n2+/h (n – film refractive index, λ – optical wavelength, h …


Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim Jan 2011

Scanning Capacitance Spectroscopy On N+-P Asymmetrical Junctions In Multicrystalline Si Solar Cells, Chun-Sheng Jiang, Jennifer T. Heath, Helio R. Moutinho, Mowafak M. Al-Jassim

Faculty Publications

We report on a scanning capacitance spectroscopy (SCS) study on the n+-p junction of multicrystalline silicon solar cells. We found that the spectra taken at space intervals of ∼10 nm exhibit characteristic features that depend strongly on the location relative to the junction. The capacitance-voltage spectra exhibit a local minimum capacitance value at the electrical junction, which allows the junction to be identified with ∼10-nm resolution. The spectra also show complicated transitions from the junction to the n-region with two local capacitance minima on the capacitance-voltage curves; similar spectra to that have not been previously reported in …


Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett Jan 2002

Effect Of Ga Content On Defect States In Cuin1-XGaXSe2 Photovoltaic Devices, Jennifer T. Heath, J. David Cohen, William N. Shafarman, Dongxiang Liao, Angus Rockett

Faculty Publications

Defects in the band gap of CuIn1-xGaxSe2 have been characterized using transient photocapacitance spectroscopy. The measured spectra clearly show response from a band of defects centered around 0.8 eV from the valence band edge as well as an exponential distribution of band tail states. Despite Ga contents ranging from Ga/(In+Ga)=0.0 to 0.8, the defect bandwidth and its position relative to the valence band remain constant. This defect band may act as an important recombination center, contributing to the decrease in device efficiency with increasing Ga content.


High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman Jan 2002

High-Efficiency Solar Cells Based On Cu(Inal)Se[Sub 2] Thin Films, S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, W. N. Shafarman

Electrical & Computer Engineering Faculty Publications

A Cu(InAl)Se2solar cell with 16.9% efficiency is demonstrated using a Cu(InAl)Se2thin film deposited by four-source elemental evaporation and a device structure of glass/Mo/Cu(InAl)Se2/CdS/ZnO/indium tin oxide/(Ni/Algrid)/MgF2. A key to high efficiency is improved adhesion between the Cu(InAl)Se2 and the Mo back contact layer, provided by a 5-nm-thick Ga interlayer, which enabled the Cu(InAl)Se2 to be deposited at a 530 °C substrate temperature. Film and device properties are compared to Cu(InGa)Se2 with the same band gap of 1.16 eV. The solar cells have similar behavior, with performance limited by recombination through …