Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

PDF

Doctoral Dissertations

Molecular Dynamics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella Dec 2023

Atomic-Level Mechanisms Of Fast Relaxation In Metallic Glasses, Leo W. Zella

Doctoral Dissertations

Glasses are ubiquitous in daily life and have unique properties which are a consequence of the underlying disordered structure. By understanding the fundamental processes that govern these properties, we can modify glasses for desired applications. Key to understanding the structure-dynamics relationship in glasses is the variety of relaxation processes that exist below the glass transition temperature. Though these relaxations are well characterized with macroscopic experimental techniques, the microscopic nature of these relaxations is difficult to elucidate with experimental tools due to the requirements of timescale and spatial resolution. There remain many questions regarding the microscopic nature of relaxation in glass …


Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz May 2021

Multi-Scale Computational Modeling Of Metal/Ceramic Interfaces, Abu Shama Mohammad Miraz

Doctoral Dissertations

Multi-scale atomistic calculations were carried out to understand the interfacial features that dictate the mechanical integrity of the metal/ceramic nanolaminates. As such, first principles density functional theory (DFT) calculations were performed to understand the electronic and atomistic factors governing adhesion and resistance to shear for simple metal/ceramic interfaces, whereas molecular dynamics (MD) simulations were performed to observe the impact of interfacial structures, such as misfit dislocation network geometries and orientation relationships, on interfacial mechanical properties.

For the DFT investigation, we choose metals with different crystal structures, namely - Cu (fcc), Cr (bcc) and Ti (hcp) along with a variety of …