Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Old Dominion University

Series

Microelectrodes

Articles 1 - 2 of 2

Full-Text Articles in Physics

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng Jan 2011

A Cell Electrofusion Microfluidic Device Integrated With 3d Thin-Film Microelectrode Arrays, Ning Hu, Jun Yang, Shizhi Qian, Sang W. Joo, Xiaolin Zheng

Mechanical & Aerospace Engineering Faculty Publications

A microfluidic device integrated with 3D thin film microelectrode arrays wrapped around serpentine-shaped microchannel walls has been designed, fabricated and tested for cell electrofusion. Each microelectrode array has 1015 discrete microelectrodes patterned on each side wall, and the adjacent microelectrodes are separated by coplanar dielectric channel wall. The device was tested to electrofuse K562 cells under a relatively low voltage. Under an AC electric field applied between the pair of the microelectrode arrays, cells are paired at the edge of each discrete microelectrode due to the induced positive dielectrophoresis. Subsequently, electric pulse signals are sequentially applied between the microelectrode arrays …