Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Electronic Structure Of Lithium Tetraborate, David J. Wooten Jun 2010

Electronic Structure Of Lithium Tetraborate, David J. Wooten

Theses and Dissertations

Due to interest as neutron detection material, an investigation of Li2B4O7(110) and Li2B4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9±0.5 eV to 10.1±0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of LDA and DFT calculations. …


Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams Mar 2010

Three Dimensional Positron Annihilation Momentum Measurement Technique (3dpamm) Applied To Measure Oxygen-Atom Defects In 6h Silicon Carbide, Christopher S. Williams

Theses and Dissertations

A three-dimensional Positron Annihilation Spectroscopy System (3DPASS) capable to simultaneously measure three-dimensional electron-positron (e--e+) momentum densities measuring photons derived from e--e+ annihilation events was designed and characterized. 3DPASS simultaneously collects a single data set of correlated energies and positions for two coincident annihilation photons using solid-state double-sided strip detectors (DSSD). Positions of photons were determined using an interpolation method which measures a figure-of-merit proportional to the areas of transient charges induced on both charge collection strips directly adjacent to the charge collection strips interacting with the annihilation photons. The subpixel resolution was measured for both double-sided strip detectors (DSSD) and …


In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina Mar 2010

In-Situ, Gate Bias Dependent Study Of Neutron Irradiation Effects On Algan/Gan Hfets, Janusz K. Mikina

Theses and Dissertations

AlGaN/GaN Heterostructure Field Effect Transistors (HFETs) have come under increased study in recent years due to their highly desirable material and electrical properties and survivability even during and after exposure to extreme temperature and radiation environments. In this study, unpassivated and SiN passivated Al0.27Ga0.73N/GaN HFETs were subjected to neutron radiation at 120 K. The primary focus of the research was the effects of neutron irradiation on drain current, gate leakage current, threshold voltage shift, gate-channel capacitance, and the effects of biasing the gate during irradiation. In-situ measurements were conducted on transistor current, gate-channel capacitance, and gate …


The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt Mar 2010

The Material Properties Of Cssnbr3 And Csbr:Sn-1% And Their Potential As Scintillator Detector Material, Neal B. Kleinschmidt

Theses and Dissertations

The search for superior nuclear radiation detection materials is ongoing. Current scintillator materials using Thallium doped Sodium Iodide or Cesium Iodide are the benchmarks for ease of use and quick identification of isotope species. This research aims to explore Cesium Bromide doped with 1% molar tin (CsBr:Sn-1%) and Cesium Tin Bromide (CsSnBr3) as candidate materials for a new scintillator. The techniques of Extended X-Ray Absorption Fine Structure (EXAFS), X-Ray Absorption Near Edge Structure (XANES) and Cathodoluminescence are used to determine the suit- ability of CsSnBr3 and CsBr:Sn-1% with Sn4+ as a potential scintillator materials and explore their …


Understanding The Promotion Effect: A Density Functional Theory Study Based On High Resolution Transmission Electron Microscopy Images For Mos2-Cobalt Promoted Interfaces, Manuel A. Ramos Jan 2010

Understanding The Promotion Effect: A Density Functional Theory Study Based On High Resolution Transmission Electron Microscopy Images For Mos2-Cobalt Promoted Interfaces, Manuel A. Ramos

Open Access Theses & Dissertations

Many studies had been done in order to understand promotion effect and structure/function in unsupported catalyst. Results indicated that d-electrons play an important role promoting catalytical active sites at the edges of MoS2 catalytically structures. Sulfur removal from crude oil, occurs on the edge of molybdenum di-sulfide (MoS2) nano structures, due to promotion of MoS2 nano structures with nickel or cobalt in sulfur-terminated or molybdenum-terminated edge planes. The promotion leads to formation of so-called CoMoS phase (MoS2/Co9S8) first discovered by meaning of Mössbauer spectroscopy, much more CoMoS phase usually called unsupported catalytical particles, have been topic of great interest in …