Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physics

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer Jan 2023

Long-Range Aceo Phenomena In Microfluidic Channel, Diganta Dutta, Keifer Smith, Xavier Palmer

Electrical & Computer Engineering Faculty Publications

Microfluidic devices are increasingly utilized in numerous industries, including that of medicine, for their abilities to pump and mix fluid at a microscale. Within these devices, microchannels paired with microelectrodes enable the mixing and transportation of ionized fluid. The ionization process charges the microchannel and manipulates the fluid with an electric field. Although complex in operation at the microscale, microchannels within microfluidic devices are easy to produce and economical. This paper uses simulations to convey helpful insights into the analysis of electrokinetic microfluidic device phenomena. The simulations in this paper use the Navier–Stokes and Poisson Nernst–Planck equations solved using COMSOL …


Mathematical Modeling Of Two-Dimensional Unsteady Flow In Growing Tumor, N. Gracia, D. N. Riahi, R. Roy Jun 2015

Mathematical Modeling Of Two-Dimensional Unsteady Flow In Growing Tumor, N. Gracia, D. N. Riahi, R. Roy

Applications and Applied Mathematics: An International Journal (AAM)

We investigate the problem of unsteady fluid flow in growing solid tumors. We develop a mathematical model for a growing tumor whose boundary is taken as a sphere, and the unsteady fluid flow within the tumor is assumed to be two dimensional with respect to the radial distance and the latitudinal angle in spherical coordinates. The expressions for the time, radial and latitudinal variations of the flow velocity, pressure, and the two investigated drug concentrations within the tumor were determined analytically. We calculated these quantities in the tumor as well as in a corresponding normal tissue. We find, in particular, …


Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …


Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery May 1991

Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery

Dartmouth Scholarship

Numerical solution of two-dimensional incompressible hydrodynamics shows that states of a near-minimal ratio of enstrophy to energy can be attained in times short compared with the flow decay time, confirming the simplest turbulent selective decay conjecture, and suggesting that coherent vortex structures do not terminate nonlinear processes. After all possible vortex mergers occur, the vorticity attains a particlelike character, suggested by the late-time similarity of the streamlines to Ewald potential contours.