Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Variable Resolution Smoothed Particle Hydrodynamics Schemes For 2-D And 3-D Viscous Flows, Francesco Ricci Aug 2023

Variable Resolution Smoothed Particle Hydrodynamics Schemes For 2-D And 3-D Viscous Flows, Francesco Ricci

Dissertations

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian particle-based method for the numerical solution of the partial differential equations that govern the motion of fluids. The main aim of this thesis work is to better enable the applicability of SPH to problems involving multi-scale fluid dynamics. In the first part of the thesis, the capability of the SPH method to simulate three-dimensional isotropic turbulence is investigated with a detailed comparison of Lagrangian and Eulerian SPH formulations. The main reason for this first investigation is to provide an assessment of the error introduced by the particle disorder on the SPH discrete operators …


Numerical Study Of Owls’ Leading-Edge Serrations, Asif Shahriar Nafi Jan 2023

Numerical Study Of Owls’ Leading-Edge Serrations, Asif Shahriar Nafi

Electronic Theses and Dissertations

The silent flight ability of owls is often attributed to their unique wing morphology and its interaction with their wingbeat kinematics. Among these distinctive morphological features, leading-edge serrations stand out – these are rigid, miniature, hook-like patterns located at the leading edge of the primary feathers of their wings. It had been hypothesized that these leading-edge serrations serve as a passive flow control mechanism, influencing the aerodynamic performance and potentially affecting the boundary layer development over the wing, subsequently influencing wake flow dynamics. Despite being the subject of research spanning multiple decades, a consensus regarding the aerodynamic mechanisms underpinning owls’ …


Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms, Mandar Makwana Jan 2023

Using Computational Fluid Dynamics And Optical Sensor Technology To Scale Cell Culture Platforms, Mandar Makwana

KGI Theses and Dissertations

Different cell culture vessels ranging from micro scale to laboratory scale to commercial scale play critical role in upstream process development for biologics manufacturing. Based on the mode of operation, cell culture vessels have different hydrodynamic environments, making it challenging to scale. Integrated approaches using computational tools supported by experimental studies can overcome these challenges. Computational Fluid Dynamics (CFD) is one such tool that can simulate hydrodynamics within the cell culture vessels and can provide insights at macro and micro-scale. Accuracy of a CFD model significantly depends on the fluid model and assumptions. Traditionally, simple two-equation fluid models were developed …