Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …


Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo Jul 2000

Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo

Electrical & Computer Engineering Faculty Publications

The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar-and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude …


Effect Of Slow Compression On The Linear Stability Of An Accelerated Shear Layer, John D. Ramshaw Feb 2000

Effect Of Slow Compression On The Linear Stability Of An Accelerated Shear Layer, John D. Ramshaw

Physics Faculty Publications and Presentations

An analysis is given of the effect of a slow uniform anisotropic compression or expansion on the linear stability of a normally accelerated planar interface between two fluids with different densities and tangential velocities, i.e., a combined Kelvin-Helmholtz and Rayleigh-Taylor instability, but generalized to an arbitrary time-dependent acceleration history. The compression is presumed to be sufficiently slow that the density remains uniform within each fluid and hence depends only on time. The perturbation is taken to be sinusoidal with amplitude h(t). The time evolution of h is determined by requiring pressure continuity across the interface in the usual way. The …


Wave Profile For Antiforce Class Ii Waves, Rory Roberts, Mostafa Hemmati Jan 2000

Wave Profile For Antiforce Class Ii Waves, Rory Roberts, Mostafa Hemmati

Journal of the Arkansas Academy of Science

Breakdown waves propagating in the opposite direction of the applied electric field force are referred to as antiforce waves. Breakdown waves moving into a pre-ionized medium are referred to as Class II waves. Using a one-dimensional, steady state, three-fluid, hydrodynamical model and considering the electrons as the main element in propagation of ionizing waves, we have derived the proper boundary conditions for antiforce waves moving into a preionized medium. Using the new boundary conditions and for several current values ahead of the wave, the set of electron fluid dynamical equations (equations of conservation of mass, momentum, and energy coupled with …


Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt Jan 2000

Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt

Articles

The three-dimensional Row in a corner of fixed angle α induced by the rotation in its plane of one of the boundaries is considered. A local similarity solution valid in a neighbourhood of the centre of rotation is obtained and the streamlines are shown to be closed curves. The effects of inertia are considered and are shown to be significant in a small neighbourhood of the plane of symmetry of the flow. A simple experiment confirms that the streamlines are indeed nearly closed; their projections on planes normal to the line of intersection of the boundaries are precisely the 'Taylor' …