Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physics

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko Dec 2017

Flow Anisotropy Due To Thread-Like Nanoparticle Agglomerations In Dilute Ferrofluids, Alexander Cali, Wah-Keat Lee, A. David Trubatch, Philip Yecko

Department of Applied Mathematics and Statistics Faculty Scholarship and Creative Works

Improved knowledge of the magnetic field dependent flow properties of nanoparticle-based magnetic fluids is critical to the design of biomedical applications, including drug delivery and cell sorting. To probe the rheology of ferrofluid on a sub-millimeter scale, we examine the paths of 550 μm diameter glass spheres falling due to gravity in dilute ferrofluid, imposing a uniform magnetic field at an angle with respect to the vertical. Visualization of the spheres’ trajectories is achieved using high resolution X-ray phase-contrast imaging, allowing measurement of a terminal velocity while simultaneously revealing the formation of an array of long thread-like accumulations of magnetic …


Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah F. H. Alhamdi, Sean C. C. Bailey Nov 2017

Universality Of Local Dissipation Scales In Turbulent Boundary Layer Flows With And Without Free-Stream Turbulence, Sabah F. H. Alhamdi, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation scale distribution is examined in these two boundary conditions. Results demonstrated that the local large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly normalize the dissipation scale distribution near the wall in these two free-stream conditions due to the imperfect characterization of the upper bound of the inertial cascade by the integral length scale. A surrogate found from turbulent kinetic energy and …


Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko Nov 2017

Dynamic Self-Assembly And Self-Organized Transport Of Magnetic Micro-Swimmers, Gašper Kokot, German Kolmakov V, Igor S. Aranson, Alexey Snezhko

Publications and Research

We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. The morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.


A Mathematical Analysis Of Drug Dissolution In The Usp Flow Through Apparatus, David Mcdonnell, Deirdre M. D'Arcy, Lawrence J. Crane, Brendan Redmond Oct 2017

A Mathematical Analysis Of Drug Dissolution In The Usp Flow Through Apparatus, David Mcdonnell, Deirdre M. D'Arcy, Lawrence J. Crane, Brendan Redmond

Articles

This paper applies boundary layer theory to the process of drug dissolution in the USP (United States Pharmacopeia) Flow Through Apparatus. The mass transfer rate from the vertical planar surface of a compact within the device is examined. The theoretical results obtained are then compared with those of experiment. The paper also examines the effect on the dissolution process caused by the interaction between natural and forced convection within the apparatus and the introduction of additional boundaries.


A Mathematical Model And Numerical Simulations Of Redox Electrochemical Systems With Mhd And Natural Convection, Kakkattukuzhy M. Isaac, Fangping Yuan Aug 2017

A Mathematical Model And Numerical Simulations Of Redox Electrochemical Systems With Mhd And Natural Convection, Kakkattukuzhy M. Isaac, Fangping Yuan

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

A comprehensive mathematical model for redox electrochemical systems with magnetohydrodynamics (MHD) and natural convection are presented. The model is based on density changes in isothermal systems that accompany redox reaction at the electrode due to supporting electrolyte ions migrating into and out of the diffusion layer to satisfy electroneutrality. Numerical simulations have been performed for an axisymmetric, milli-electrode electrochemical cell with gravity directed along the axis in both directions to investigate the effect of the electrode orientation with respect to gravity. Results show that natural convection is significant in both cases, with the maximum velocity being an order of magnitude …


Natural Convection In Redox Electrochemistry: Model, Simulation And Experiments, Fangping Yuan, Kakkattukuzhy M. Isaac Jun 2017

Natural Convection In Redox Electrochemistry: Model, Simulation And Experiments, Fangping Yuan, Kakkattukuzhy M. Isaac

Collaborative Research: Actively Controllable Microfluidics with Film-Confined Redox-Magnetohydrodynamics -- Video and Data

No abstract provided.


A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab Apr 2017

A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab

Publications

Velocity-pressure coupling schemes for the solution of incompressible fluid flow problems in Computational Fluid Dynamics (CFD) rely on the formulation of Poisson-like equations through projection methods. The solution of these Poisson-like equations represent the pressure correction and the velocity correction to ensure proper satisfaction of the conservation of mass equation at each step of a time-marching scheme or at each level of an iteration process. Inaccurate solutions of these Poisson-like equations result in meaningless instantaneous or intermediate approximations that do not represent the proper time-accurate behavior of the flow. The fact that these equations must be solved to convergence at …


An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab Apr 2017

An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab

Publications

In recent years significant focus has been given to the study of Radial basis functions (RBF), especially in their use on solving partial differential equations (PDE). RBF have an impressive capability of inter- polating scattered data, even when this data presents localized discontinuities. However, for infinitely smooth RBF such as the Multiquadrics, inverse Multiquadrics, and Gaussian, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary significantly depending on the field, particularly in locations of steep gradients, shocks, or discontinuities. Typically, the shape parameter is chosen …


An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey Mar 2017

An Experimental Investigation Of Wing-Tip Vortex Decay In Turbulence, Hai G. Ghimire, Sean C. C. Bailey

Mechanical Engineering Faculty Publications

Particle image velocimetry measurements were conducted for a wing-tip vortex decaying in free-stream turbulence. The vortex exhibited stochastic collapse with free-stream turbulence present, with the breakdown initiating earlier for higher levels of turbulence. An increased rate of decay of the vortex tangential velocity was also observed, increasing with increasing free-stream turbulence. The decay of the vortex tangential velocity without the free-stream turbulence was well represented by viscous diffusion, resulting in an increase in the core radius and decrease in the peak tangential velocity. With the addition of free-stream turbulence, the rate of decay of the peak tangential velocity of the …


Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher Mar 2017

Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher

Publications

A system of wake control for a ground vehicle to help promote increased fuel efficiencies of the ground vehicle by modifying an air flow wake generated during the movement of the vehicle in a forward direction. The system includes at least one slot jet configured to be located along a rear profile portion of the ground vehicle. The at least one slot jet is configured to provide a continuous flow of air at a non-zero velocity when the ground vehicle is moving in a forward direction, the non-zero velocity being at least partially directed in a rearward direction with an …


Hampton Roads Crossing Study Supplemental Environmental Impact Statement: Evaluation Of Potential Impact On Surface Water Elevation, Flow, Salinity, And Bottom Shear Stress, Yinglong J. Zhang, Harry V. Wang, Zhuo Liu, Mac Sisson, Jian Shen Jan 2017

Hampton Roads Crossing Study Supplemental Environmental Impact Statement: Evaluation Of Potential Impact On Surface Water Elevation, Flow, Salinity, And Bottom Shear Stress, Yinglong J. Zhang, Harry V. Wang, Zhuo Liu, Mac Sisson, Jian Shen

Reports

The purpose of this study is to evaluate the potential impacts of the proposed alternatives for the highway crossing in Hampton Roads on physical characteristics of surface water elevation, flow, salinity, and bottom shear stress. The analysis is part of the Virginia Department of Transportation (VDOT), the Federal Highway Administration, and other stakeholders’ Supplemental Environmental Impact Statement (SEIS) for Hampton Roads Crossing Study (HRCS).


Exploiting Modern Image Processing In Surface Flow Visualisation, Tarek Ihab Abdelsalam, Richard Williams, Grant Ingram Jan 2017

Exploiting Modern Image Processing In Surface Flow Visualisation, Tarek Ihab Abdelsalam, Richard Williams, Grant Ingram

Mechanical Engineering

Surface flow visualisation is an experimental technique where the surface of interest is painted with an oil and dye mixture before a flow is applied to the object. In regions of high shear stress the oil/dye mixture is then removed and in regions of low shear stress the oil/dye mixture stays or builds up. The resulting pattern can be analysed to determine the structure near the surface under test, this is normally done in a qualitative manner with flow structures being identified based on the expertise of the experimentalist. Modern image processing tools can identify shapes and lines in pictures …