Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Drag Reduction Using Graphene In Viscous Laminar Flow With Water And Isopropanol, Jessica M. Patalano, Akm Newaz Dr. Jan 2016

Drag Reduction Using Graphene In Viscous Laminar Flow With Water And Isopropanol, Jessica M. Patalano, Akm Newaz Dr.

STAR Program Research Presentations

America has over 2.6 million miles of pipeline for the transportation of energy products, such as liquid petroleum and natural gas. Friction is one of the main sources for energy dissipation at liquid/solid interfaces that limits the transport of a fluid through a cylindrical pipe or tube. In order to make these pipelines more efficient and enhance the flow of these materials, it is necessary to find a coating material that reduces the frictional drag. The ideal material would reduce the drag between the fluid and solid interface while being easily synthesizable on the surface. The goal of this project …


A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula Sep 2008

A Better Nondimensionalization Scheme For Slender Laminar Flows: The Laplacian Operator Scaling Method, Mark M. Weislogel, Yongkang Chen, D. Bolleddula

Mechanical and Materials Engineering Faculty Publications and Presentations

A scaling of the two-dimensional Laplacian operator is demonstrated for certain solutions (at least) to Poisson’s equation. It succeeds by treating the operator as a single geometric scale entity. The belated and rather subtle method provides an efficient assessment of the geometrical dependence of the problem and is preferred when practicable to the hydraulic diameter or term-by-term scaling for slender fully developed laminar flows. The improved accuracy further reduces the reliance of problems on widely varying numerical data or cumbersome theoretical forms and improves the prospects of exact or approximate theoretical analysis. Simple example problems are briefly described that demonstrate …


Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery May 1991

Selective Decay And Coherent Vortices In Two-Dimensional Incompressible Turbulence, William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery

Dartmouth Scholarship

Numerical solution of two-dimensional incompressible hydrodynamics shows that states of a near-minimal ratio of enstrophy to energy can be attained in times short compared with the flow decay time, confirming the simplest turbulent selective decay conjecture, and suggesting that coherent vortex structures do not terminate nonlinear processes. After all possible vortex mergers occur, the vorticity attains a particlelike character, suggested by the late-time similarity of the streamlines to Ewald potential contours.