Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

Theses/Dissertations

Molecular Dynamics

Articles 1 - 2 of 2

Full-Text Articles in Physics

Mechanical Behavior Of Cyclo-18 On Nickel And Copper Substrates, Reagan Michael Kraft May 2021

Mechanical Behavior Of Cyclo-18 On Nickel And Copper Substrates, Reagan Michael Kraft

Mechanical Engineering Undergraduate Honors Theses

Carbyne, an -hybridized allotrope of carbon, has been the subject of many studies recently due to its incredible mechanical properties and small size. More recently, another -hybridized allotrope known as cyclo-18, has gained interest. In this study, computational molecular dynamics will be used to determine the mechanical properties of cyclo-18. Peeling and shearing tests of the molecule will be conducted on nickel and copper, which are respectively active and less-active transition metals. Additionally, a carbyne chain of equal length will undergo the same tests on the copper substrate to compare the mechanical properties of the two. The results conclude that …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …