Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physics

Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Srf Applications, J. K. Tiskumara, Jean R. Delayen, G. V. Eremeev, U. Pudasaini, C. E. Reece

Physics Faculty Publications

The twin axis cavity with two identical accelerating beams has been proposed for energy recovery linac (ERL) applications. Nb3Sn is a superconducting material with a higher critical temperature and a higher critical field as compared to Nb, which promises a lower operating cost due to higher quality factors. Two niobium twin axis cavities were fabricated at JLab and were proposed to be coated with Nb3Sn. Due to their more complex geometry, the typical coating process used for basic elliptical cavi-ties needs to be improved to coat these cavities. This development advances the current coating system at …


Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev Jan 2021

Nb3Sn Coating Of Twin Axis Cavity For Accelerator Applications, Jayendrika K. Tiskumara, Subashini U. De Silva, Jean Delayen, U. Pudasaini, C. E. Reece, H. Park, G. Eremeev

Physics Faculty Publications

A Superconducting twin axis cavity consisting of two identical beam pipes that can accelerate and decelerate beams within the same structure has been proposed for the Energy Recovery Linac (ERL) applications. There are two niobium twin axis cavities at JLab fabricated with the intention of later Nb₃Sn coating and now we are progressing to coat them using vapor diffusion method. Nb₃Sn is a potential alternate material for replacing Nb in SRF cavities for better performance and reducing operational costs. Because of advanced geometry, larger surface area, increased number of ports and hard to reach areas of the twin axis cavities, …


Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman Jan 2021

Initial Studies Of Cavity Fault Prediction At Jefferson Laboratory, L.S. Vidyaratne, A. Carpenter, R. Suleiman, C. Tennant, D. Turner, Khan Iftekharuddin, Md. Monibor Rahman

Electrical & Computer Engineering Faculty Publications

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a CW recirculating linac that utilizes over 400 superconducting radio-frequency (SRF) cavities to accelerate electrons up to 12 GeV through 5-passes. Recent work has shown that, given RF signals from a cavity during a fault as input, machine learning approaches can accurately classify the fault type. In this paper we report on initial results of predicting a fault onset using only data prior to the failure event. A data set was constructed using time-series data immediately before a fault (’unstable’) and 1.5 seconds prior to a fault (’stable’) gathered …