Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Series

2018

Emittance

Articles 1 - 1 of 1

Full-Text Articles in Physics

300 Kv Dc High Voltage Photogun With Inverted Insulator Geometry And Csk₂Sb Photocathode, Y.W. Wang, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.M. Grames, F. E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, Geoffrey A. Krafft, M. A. Mamun, G. G. Palacios Serrano, M. Poelker, R. Suleiman, M. G. Tiefenback, S.A.K. Wijethunga Jan 2018

300 Kv Dc High Voltage Photogun With Inverted Insulator Geometry And Csk₂Sb Photocathode, Y.W. Wang, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.M. Grames, F. E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, Geoffrey A. Krafft, M. A. Mamun, G. G. Palacios Serrano, M. Poelker, R. Suleiman, M. G. Tiefenback, S.A.K. Wijethunga

Physics Faculty Publications

A compact DC high voltage photogun with inverted-insulator geometry was designed, built and operated reliably at 300 kV bias voltage using alkali-antimonide photocathodes. This presentation describes key electrostatic design features of the photogun with accompanying emittance measurements obtained across the entire photocathode surface that speak to field non-uniformity within the cathode/anode gap. A summary of initial photocathode lifetime measurements at beam currents up to 4.5 mA is also presented.