Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Series

2017

Boltzmann equation

Articles 1 - 2 of 2

Full-Text Articles in Physics

Characterization Of Laser-Generated Aluminum Plasma Using Ion Time-Of-Flight And Optical Emission Spectroscopy, Md. Haider A. Shaim, Hani E. Elsayed-Ali Nov 2017

Characterization Of Laser-Generated Aluminum Plasma Using Ion Time-Of-Flight And Optical Emission Spectroscopy, Md. Haider A. Shaim, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Laser plasma generated by ablation of an Al target in vacuum is characterized by ion time-of-flight combined with optical emission spectroscopy. A Q-switched Nd:YAG laser (wavelength λ = 1064 nm, pulse width τ ∼ 7 ns, and fluence F ≤ 38 J/cm2) is used to ablate the Al target. Ion yield and energy distribution of each charge state are measured. Ions are accelerated according to their charge state by the double-layer potential developed at the plasma-vacuum interface. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. Optical emission spectroscopy of the Al plasma gives significantly lower plasma temperature …


Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali May 2017

Aluminum Multicharged Ion Generation From Femtosecond Laser Plasma, Md. Haider A. Shaim, Frederick Guy Wilson, Hani E. Elsayed-Ali

Electrical & Computer Engineering Faculty Publications

Aluminum multicharged ion generation from femtosecond laser ablation is studied. A Ti:sapphire laser (wavelength 800 nm, pulse width ∼100 fs, and maximum laser fluence of 7.6 J/cm2) is used. Ion yield and energy distribution of each charge state are measured. A linear relationship between the ion charge state and the equivalent acceleration energy of the individual ion species is observed and is attributed to the presence of an electric field within the plasma-vacuum boundary that accelerates the ions. The ion energy distribution follows a shifted Coulomb-Boltzmann distribution. For Al1+ and Al2+, the ion energy distributions …