Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Series

2015

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 47

Full-Text Articles in Physics

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Investigation Of Photopolymer-Based Holographic Optical Elements For Solar Applications, Hoda Akbari Nov 2015

Investigation Of Photopolymer-Based Holographic Optical Elements For Solar Applications, Hoda Akbari

Doctoral

The aim of this research was to explore the potential of photopolymer Holographic Optical Elements (HOE) for use in the collection of light from a moving source, such as the sun, and its direction into a fixed detector/convertor for application in solar concentrators. In order to increase the acceptance angle and the wavelength range of operation of the holographic device, low spatial frequency holographic recording was explored. The challenge was to record high diffraction efficiency HOEs at this spatial frequency, since it requires a material with relatively fast monomer diffusion. The acrylamide-based photopolymer developed at the Centre for Industrial and …


Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer Sep 2015

Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer

Physics Faculty Publications

Ambitious policy targets together with current and projected high growth rates indicate that future power systems will likely show substantially increased generation from renewable energy sources. A large share will come from the variable renewable energy (VRE) sources wind and solar photovoltaics (PV); however, integrating wind and solar causes challenges for existing power systems. In this paper we analyze three major integration challenges related to the structural matching of demand with the supply of wind and solar power: low capacity credit, reduced utilization of dispatchable plants, and over-produced generation. Based on residual load duration curves we define corresponding challenge variables …


Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova Aug 2015

Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova

Physics Faculty Publications

This work discusses the creation and use of infographies in an undergraduate mathematics course. Infographies are a visualization of information combining data, formulas, and images. This article discusses how to form an infographic and uses infographics on topics within mathematics and climate as examples. It concludes with survey data from undergraduate students on both the general use of infographics and on the specific infographics designed by the authors.


Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday Jul 2015

Improved Terahertz Modulation Using Germanium Telluride (Gete) Chalcogenide Thin Films, Alexander H. Gwin, Christopher H. Kodama, Tod V. Laurvick, Ronald Coutu Jr., Philip F. Taday

Faculty Publications

We demonstrate improved terahertz (THz) modulation using thermally crystallized germanium telluride (GeTe) thin films. GeTe is a chalcogenide material that exhibits a nonvolatile, amorphous to crystalline phase change at approximately 200 °C, as well as six orders of magnitude decreased electrical resistivity. In this study, amorphous GeTe thin films were sputtered on sapphire substrates and then tested using THz time-domain spectroscopy (THz-TDS). The test samples, heated in-situ while collecting THz-TDS measurements, exhibited a gradual absorbance increase, an abrupt nonvolatile reduction at the transition temperature, followed by another gradual increase in absorbance. The transition temperature was verified by conducting similar thermal …


The Robert H. Goddard Papers, Robert H. Goddard Jul 2015

The Robert H. Goddard Papers, Robert H. Goddard

Archives & Special Collections Finding Aids

Dr. Robert H. Goddard was a member of the Clark Physics Department for 29 years. Foremost American pioneer of rocket research, he laid the technical and theoretical foundations for many of the developments in long-range rockets, missiles, satellites and space flight, which collectively put us into the Space Age.

The collection includes correspondence, diaries, journals, patent applications and awards, reports, and photographs. The collection also includes original paintings by Dr. Goddard.


Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher Jun 2015

Spectrally-Resolved Imaging Of The Transverse Modes In Multimode Vcsels, Stephan A. Misak, Dan G. Dugmore, Kirsten A. Middleton, Evan R. Hale, Kelly R. Farner, Kent D. Choquette, Paul O. Leisher

Rose-Hulman Undergraduate Research Publications

Vertical-cavity surface-emitting lasers (VCSELs) enable a range of applications such as data transmission, trace sensing, atomic clocks, and optical mice. For many of these applications, the output power and beam quality are both critical (i.e. high output power with good beam quality is desired). Multi-mode VCSELs offer much higher power than single-mode devices, but this comes at the expense of lower beam quality. Directly observing the resolved mode structure of multi-mode VCSELs would enable engineers to better understand the underlying physics and help them to develop multi-mode devices with improved beam quality. In this work, a low-cost, high-resolution (<3 >pm) …


A Charged Fusion Product Diagnostic For A Spherical Tokamak, Ramona V. Perez May 2015

A Charged Fusion Product Diagnostic For A Spherical Tokamak, Ramona V. Perez

FIU Electronic Theses and Dissertations

Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function …


Manipulating The Mass Distribution Of A Golf Putter, Paul J. Hessler Jr. May 2015

Manipulating The Mass Distribution Of A Golf Putter, Paul J. Hessler Jr.

Senior Honors Projects

Putting may appear to be the easiest but is actually the most technically challenging part of the game of golf. The ideal putting stroke will remain parallel to its desired trajectory both in the reverse and forward direction when the putter head is within six inches of the ball. Deviation from this concept will cause a cut or sidespin on the ball that will affect the path the ball will travel.

Club design plays a large part in how well a player will be able to achieve a straight back and straight through club head path near impact; specifically the …


Available Work Rate Of A Reversible System Bounded By Constant Thermal Resistances Linked To Isothermal Reservoirs, Jim Mcgovern May 2015

Available Work Rate Of A Reversible System Bounded By Constant Thermal Resistances Linked To Isothermal Reservoirs, Jim Mcgovern

Conference Papers

Exergy analysis is based on the concept of an idealized, all-enclosing reference environment that has infinite heat capacity and thermal conductivity, and is in equilibrium. The actual surroundings of a real plant such as a heat engine, a heat pump or a refrigerator may differ significantly from the ideal. First law performance parameters and second law rational efficiency are examined. The concepts of finite time thermodynamics are applied in an attempt to refine the concept of T0, the environmental reference temperature, thereby making exergy analysis more reflective of reality.


Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha Apr 2015

Cost-Availability Curves For Hierarchical Implementation Of Residential Energy-Efficiency Measures, Roman Villoria-Siegert, Philip Brodrick, Kevin P. Hallinan, Robert J. Brecha

Physics Faculty Publications

Historical residential electricity data and natural gas consumption data were collected for, respectively, 1,200 and 178 residences in a small town in the USA. These data were merged with local building and weather databases, and energy consumption models were developed for each residence, revealing substantial variation in heating and cooling intensity. After estimating approximate physical building characteristics, energy profiles for each residence were calculated, and savings from adoption of the most cost-effective energy-efficiency measures for each residence were estimated. Effectively, we wish to leverage commonly available data sets to infer characteristics of building envelopes and equipment, without the need for …


Electromechanical Magnetization Switching, Eugene M. Chudnovsky, Reem Jaafar Feb 2015

Electromechanical Magnetization Switching, Eugene M. Chudnovsky, Reem Jaafar

Publications and Research

We show that the magnetization of a torsional oscillator that, in addition to the magnetic moment also possesses an electrical polarization, can be switched by the electric field that ignites mechanical oscillations at the frequency comparable to the frequency of the ferromagnetic resonance. The 180° switching arises from the spin-rotation coupling and is not prohibited by the different symmetry of the magnetic moment and the electric field as in the case of a stationary magnet. Analytical equations describing the system have been derived and investigated numerically. Phase diagrams showing the range of parameters required for the switching have been obtained.


Producing Electricity With Solar Cells, Chris Emery, Rob Snyder Jan 2015

Producing Electricity With Solar Cells, Chris Emery, Rob Snyder

Science and Engineering Saturday Seminars

No abstract provided.


Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong Jan 2015

Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in high quality PbZr0.3Ti0.7O3 (PZT)/3.8–4.3 nm Sm0.5Nd0.5NiO3 (SNNO) heterostructures grown on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. For SNNO on LAO, which exhibits a first-order metal-insulator transition (MIT), switching the polarization of PZT induces a 10K shift in the transition temperature TMI, with a maximum resistance change between the on and off states of ΔR = Ron ~75%. In sharp contrast, only up to 5% resistance change has been …


Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer Jan 2015

Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84−xMox (𝑥 = 0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (𝑥 ≤ 1.5). The maximum energy product (𝐵𝐻)max increases with increasing 𝑥 from 0.5 MGOe for 𝑥 …


Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker Jan 2015

Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker

Faculty Scholarship

The article discusses the concept behind motion of a charged particle in a non-uniform filed of a wire carrying current. Topics discussed include possible types of motion in a current carrying field, vector analysis of velocity and magnetic field of the particle and Coupled differential equations.


Electrostatic Charge On Flying Hummingbirds And Its Potential Role In Pollination, Marc Badger, Victor Manuel Ortega-Jimenez, Lisa Von Ribenau, Ashley Smiley, Robert Dudley, Alexei Gruverman , Editor Jan 2015

Electrostatic Charge On Flying Hummingbirds And Its Potential Role In Pollination, Marc Badger, Victor Manuel Ortega-Jimenez, Lisa Von Ribenau, Ashley Smiley, Robert Dudley, Alexei Gruverman , Editor

Alexei Gruverman Publications

Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.


Temperature Mapping Of Nitrogen-Doped Niobium Superconducting Radiofrequency Cavities, Junki Makita, Gianluigi Ciovati, Pashupati Dhakal Jan 2015

Temperature Mapping Of Nitrogen-Doped Niobium Superconducting Radiofrequency Cavities, Junki Makita, Gianluigi Ciovati, Pashupati Dhakal

Physics Faculty Publications

It was recently shown that diffusing nitrogen on the inner surface of superconducting radiofrequency (SRF) cavities at high temperature can improve the quality factor of the niobium cavity. However, a reduction of the quench field is also typically found. To better understand the location of rf losses and quench, we used a thermometry system to map the temperature of the outer surface of ingot Nb cavities after nitrogen doping and electropolishing. Surface temperature of the cavities was recorded while increasing the rf power and also during the quenching. The results of thermal mapping showed no precursor heating on the cavities …


Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5nd0.5nio3, L. Zhang, X. G. Chen, H. J. Gardner, M. A. Koten, J. E. Shield, X. Hong Jan 2015

Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5nd0.5nio3, L. Zhang, X. G. Chen, H. J. Gardner, M. A. Koten, J. E. Shield, X. Hong

Xia Hong Publications

We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in high quality PbZr0.3Ti0.7O3 (PZT)/3.8-4.3 nm Sm0.5Nd0.5NiO3 (SNNO) heterostructures grown on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. For SNNO on LAO, which exhibits a first-order metal-insulator transition (MIT), switching the polarization of PZT induces a 10 K shift in the transition temperature TMI, with a maximum resistance change between the on and off states of Δ𝑅/𝑅on ~75%. In sharp contrast, only up to 5% resistance change has …


Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton Jan 2015

Development Of Srf Cavity Tuners For Cern, K. Artoos, R. Calaga, O. Capatina, T. Capelli, F. Carra, L. Dassa, N. Kuder, R. Leuxe, P. Minginette, W. Venturini Delsolaro, G. Villiger, C. Zanoni, P. Zhang, S. Verdu-Andrés, B. Xiao, G. Burt, J. Delayen, Hyekyoung Park, T. Jones, N. Templeton

Physics Faculty Publications

Superconducting RF cavity developments are currently on-going for new accelerator projects at CERN such as HIE ISOLDE and HL-LHC. Mechanical RF tuning systems are required to compensate cavity frequency shifts of the cavities due to temperature, mechanical, pressure and RF effects on the cavity geometry. A rich history and experience is available for such mechanical tuners developed for existing RF cavities. Design constraints in the context of HIE ISOLDE and HL-LHC such as required resolution, space limitation, reliability and maintainability have led to new concepts in the tuning mechanisms. This paper will discuss such new approaches, their performances and planned …


Additional Results For "Joint Entropy Of Continuously Differentiable Ultrasonic Waveforms" [J. Acoust. Soc. Am. 133(1), 283-300 (2013)], M S. Hughes, J N. Marsh, S A. Wickline, John E. Mccarthy Jan 2015

Additional Results For "Joint Entropy Of Continuously Differentiable Ultrasonic Waveforms" [J. Acoust. Soc. Am. 133(1), 283-300 (2013)], M S. Hughes, J N. Marsh, S A. Wickline, John E. Mccarthy

Mathematics Faculty Publications

Previous results on the use of joint entropy for detection of targeted nanoparticles accumulating in the neovasculature of MDA435 tumors [Fig. 7 of M. S. Hughes et al., J. Acoust. Soc. Am. 133, 283–300 (2013)] are extended, with sensitivity improving by nearly another factor of 2. This result is obtained using a “quasi-optimal” reference waveform in the computation of the joint entropy imaging technique used to image the accumulating nanoparticles.


Nitrogen Doping Study In Ingot Niobium Cavities, Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni, Junki Makita Jan 2015

Nitrogen Doping Study In Ingot Niobium Cavities, Pashupati Dhakal, Gianluigi Ciovati, Peter Kneisel, Ganapati Rao Myneni, Junki Makita

Physics Faculty Publications

Thermal diffusion of nitrogen in superconducting radio frequency cavities at temperatures around 800C has resulted in the increase in quality factor with a low-field Q-rise. However, the maximum accelerating gradients of these doped cavities often reduces below the values achieved by standard treatments. In this contribution, we present the results of the nitrogen diffusion into ingot niobium cavities subjected to successive material removal from the inner cavity surface by electropolishing in an effort to explore the underlying cause for the gradient degradation.


High-Velocity Spoke Cavities, C. S. Hopper, Hyekyoung Park Jan 2015

High-Velocity Spoke Cavities, C. S. Hopper, Hyekyoung Park

Physics Faculty Publications

There are several current and recent projects which explore the feasibility of spoke-loaded cavities operating in the high-velocity region. Spoke cavities have a large number of geometric parameters which often influence multiple rf properties. Fabricating, handling, and processing these cavities presents some unique challenges, not unlike other TEM-class structures. This paper will summarize the current efforts toward the design, fabrication, and testing of spoke cavities with optimum beta greater than 0.8.


Development And Testing Of A 325 Mhz Β0= 0.82 Single-Spoke Cavity, C. S. Hopper, Hyekyoung Park, J. R. Delayen Jan 2015

Development And Testing Of A 325 Mhz Β0= 0.82 Single-Spoke Cavity, C. S. Hopper, Hyekyoung Park, J. R. Delayen

Physics Faculty Publications

A single-spoke cavity operating at 325 MHz with geometric beta of 0.82 has been developed and tested. Initial results* showed high levels of field emission which limited the achievable gradient. Several rounds of helium processing significantly improved the cavity performance. Here we discuss the development process and report on the improved results.


Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev Jan 2015

Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev

Physics Faculty Publications

Results of RF tests of NB3SN thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn.


Crab Cavity And Cryomodule Development For Hl-Lhc, F. Carra, A. A. Carvalho, K. Artoos, S. Atieh, I. A. Santillana, S. Belomestnykh, A. Boucherie, J. P. Brachet, K. Brodzinski, G. Burt, S. U. De Silva, J. R. Delayen, R. Olave, H. Park Jan 2015

Crab Cavity And Cryomodule Development For Hl-Lhc, F. Carra, A. A. Carvalho, K. Artoos, S. Atieh, I. A. Santillana, S. Belomestnykh, A. Boucherie, J. P. Brachet, K. Brodzinski, G. Burt, S. U. De Silva, J. R. Delayen, R. Olave, H. Park

Physics Faculty Publications

The HL-LHC project aims at increasing the LHC luminosity by a factor 10 beyond the design value. The installation of a set of RF Crab Cavities to increase bunch crossing angle is one of the key upgrades of the program. Two concepts, Double Quarter Wave (DQW) and RF Dipole (RFD) have been proposed and are being produced in parallel for test in the SPS beam before the next long shutdown of CERN accelerator’s complex. In the retained concept, two cavities are hosted in one single cryomodule, providing thermal insulation and interfacing with RF coupling, tuning, cryogenics and beam vacuum. This …


A Facility For Magnetic Field Penetration Measurements On Multilayer S-I-S Structures, Oleg B. Malyshev, Lewis Gurran, Shrikant Pattalwar, Ninad Pattalwar, Keith D. Dumbell, Reza Valizadeh, Alex Gurevich Jan 2015

A Facility For Magnetic Field Penetration Measurements On Multilayer S-I-S Structures, Oleg B. Malyshev, Lewis Gurran, Shrikant Pattalwar, Ninad Pattalwar, Keith D. Dumbell, Reza Valizadeh, Alex Gurevich

Physics Faculty Publications

Superconducting RF cavities made of bulk Nb has reached a breakdown field of about 200 mT which is close to the superheating field for Nb. As it was theoretically shown a multilayer coating can be used to enhance the breakdown field of SRF cavities. The simple example is a superconductor-insulator-superconductor (S-I-S), for example bulk niobium (S) coated with a thin film of insulator (I) followed by a thin layer of a superconductor (S) which could be a dirty niobium. To verify such an enhancement in a presence of a DC magnetic field at 4.2 K a simple experimental facility was …


Design Of Dressed Crab Cavities For The Hl-Lhc Upgrade, C. Zanoni, K. Artoos, S. Atieh, I. Aviles-Santillana, S. Belomestnykh, I. Ben-Zvi, J.P. Brachet, G. Burt, R. Calaga, O. Captina, S. U. De Silva, J. R. Delayen, A. May, K. Marinov, R. Olave, H. Park, N. Templeton Jan 2015

Design Of Dressed Crab Cavities For The Hl-Lhc Upgrade, C. Zanoni, K. Artoos, S. Atieh, I. Aviles-Santillana, S. Belomestnykh, I. Ben-Zvi, J.P. Brachet, G. Burt, R. Calaga, O. Captina, S. U. De Silva, J. R. Delayen, A. May, K. Marinov, R. Olave, H. Park, N. Templeton

Physics Faculty Publications

The HL-LHC upgrade relies on a set of RF crab cavities for reaching its goals. Two parallel concepts, the Double Quarter Wave (DQW) and the RF Dipole (RFD), are going through a comprehensive design process along with preparation of fabrication in view of extensive tests with beam in SPS. High Order Modes (HOM) couplers are critical in providing damping in RF cavities for operation in accelerators. HOM prototyping and fabrication have recently started at CERN. In this paper, an overview of the final geometry is provided along with an insight in the mechanical and thermal analyses performed to validate the …


Performance Evaluation Of Hl-Lhc Crab Cavity Prototypes In A Cern Vertical Test Cryostat, K. G. Hernández-Chahín, A. Macpherson, C. Jarrige, M. Navarro-Tapia, R. Torres Sánchez, G. Burt, A. Tutte, S. U. De Silva Jan 2015

Performance Evaluation Of Hl-Lhc Crab Cavity Prototypes In A Cern Vertical Test Cryostat, K. G. Hernández-Chahín, A. Macpherson, C. Jarrige, M. Navarro-Tapia, R. Torres Sánchez, G. Burt, A. Tutte, S. U. De Silva

Physics Faculty Publications

Three proof-of-principle compact crab cavity designs have been fabricated in bulk niobium and cold tested at their home labs, as a first validation step towards the High Luminosity LHC project. As a cross check, all three bare cavities have been retested at CERN, in order to cross check their performance, and cross-calibrate the CERN SRF cold test facilities. While achievable transverse deflecting voltage is the key performance indicator, secondary performance aspects derived from multiple cavity monitoring systems are also discussed. Temperature mapping profiles, quench detection, material properties, and trapped magnetic flux effects have been assessed, and the influence on performance …


Superconducting Cavity For The Measurements Of Frequency, Temperature, Rf Field Dependence Of The Surface Resistance, Hyekyoung Park, S.U. De Silva, J. R. Delayen Jan 2015

Superconducting Cavity For The Measurements Of Frequency, Temperature, Rf Field Dependence Of The Surface Resistance, Hyekyoung Park, S.U. De Silva, J. R. Delayen

Physics Faculty Publications

In order to better understand the contributions of the various physical processes to the surface resistance of superconductors the ODU Center for Accelerator Science is developing a half-wave resonator capable of operating between 325 MHz and 1.3 GHz. This will allow the measurement of the temperature and rf field dependence of the surface resistance on the same surface over the range of frequency of interest for particle accelerators and identify the various sources of power dissipation.