Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics

Nebraska Center for Materials and Nanoscience: Faculty Publications

Series

2011

Articles 1 - 2 of 2

Full-Text Articles in Physics

Magnetism Of Cluster-Deposited Y–Co Nanoparticles, Balamuruga Balamurugan, Ralph Skomski, Xingzhong Li, V. R. Shah, George C. Hadjipanayis, Jeffrey E. Shield, David J. Sellmyer Jan 2011

Magnetism Of Cluster-Deposited Y–Co Nanoparticles, Balamuruga Balamurugan, Ralph Skomski, Xingzhong Li, V. R. Shah, George C. Hadjipanayis, Jeffrey E. Shield, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Nanoparticles of YCo2, YCo3, and YCo5 are produced by cluster-deposition and investigated both structurally and magnetically. The nanoparticles have sizes of less than 10 nm and are superparamagnetic at 300 K, irrespective of stoichiometry. As-produced nanoparticles exhibit disordered structures with magnetic properties differing from those of the bulk particles. The temperature-dependent magnetization curves of the nanoparticles reveal blocking temperatures from 110 to 250 K, depending on stoichiometry. The magnetic anisotropy constant K1 of disordered YCo5 nanoparticles of 7.8 nm in size is 3.5×106ergs/cm3, higher than those of the disordered YCo …


Structure And Magnetism Of Mnau Nanoclusters, X. Wei, Damien Le Roy, Ralph Skomski, Xingzhong Li, Zhiguang Sun, Jeffrey E. Shield, M. J. Kramer, David J. Sellmyer Jan 2011

Structure And Magnetism Of Mnau Nanoclusters, X. Wei, Damien Le Roy, Ralph Skomski, Xingzhong Li, Zhiguang Sun, Jeffrey E. Shield, M. J. Kramer, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

Equiatomic MnAu clusters with average sizes of 4 and 10 nm are produced by inert-gas condensation. As-produced clusters are used to form both dense cluster films and films with clusters embedded in a W matrix with a cluster volume fraction of 25%. Both structure and magnetism are size-dependent. Structural analysis of the 10 nm clusters indicate a distorted tetragonal body-centered cubic structure with lattice parameters a=0.315 and c=0.329 nm. The 4 nm clusters have a partially ordered tetragonal L10 structure with lattice parameters a=0.410 nm and c=0.395 nm. Magnetic properties of the clusters show evidence at …