Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Physics

Non-Destructive Structural Studies Of Ceramic Fragments Of Ancient Tribes Of Kazakhstan, A.Zh. Zhomartova, B.A. Bakirov, S.E. Kichanov, R.S. Zhumatayev, A.T. Toleubayev, S. Shakenov, D.P. Kozlenko Jun 2023

Non-Destructive Structural Studies Of Ceramic Fragments Of Ancient Tribes Of Kazakhstan, A.Zh. Zhomartova, B.A. Bakirov, S.E. Kichanov, R.S. Zhumatayev, A.T. Toleubayev, S. Shakenov, D.P. Kozlenko

Eurasian Journal of Physics and Functional Materials

The phase composition of several fragments of the ancient ceramic of the early medieval settlement of Asusay and burial ground Eleke Sazy in the modern Republic of Kazakhstan has been studied using neutron diffraction and Raman spectroscopy. The quartz, calcite, and feldspar minerals are dominant phases in the studied ceramic fragments. The fractions of those phases were obtained. The spatial arrangement of inner components inside volumes of fragments was determined using neutron tomography. The pores in the ceramic fragments were segmented, and the porosity for each sample was obtained. The phase composition and internal pores are discussed within the framework …


Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne May 2022

Contributions Of Vibrational Spectroscopy To Virology: A Review, Iqra Chaudhary, Naomi Jackson, Denise Denning, Luke O'Neill, Hugh Byrne

Articles

Vibrational spectroscopic techniques, both infrared absorption and Raman scattering, are high precision, label free analytical techniques which have found applications in fields as diverse as analytical chemistry, pharmacology, forensics and archeometrics and, in recent times, have attracted increasing attention for biomedical applications. As analytical techniques, they have been applied to the characterisation of viruses as early as the 1970s, and, in the context of the coronavirus disease 2019 (COVID-19) pandemic, have been explored in response to the World Health Organisation as novel methodologies to aid in the global efforts to implement and improve rapid screening of viral infection. This review …


Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel Mar 2021

Lithium Compound Characterization Via Laser Induced Breakdown Spectroscopy And Raman Spectroscopy, James T. Stofel

Theses and Dissertations

Industries such as lithium-ion battery producers and the nuclear industry community seek to produce and store lithium in pure chemical forms. However, these lithium compounds are reactive with the atmosphere and quickly degrade into less desirable forms. Therefore, industry desires a fast and effective quality control approach to quantify the ingrowth of these secondary lithium chemical forms. This research presents a novel approach using Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy in tandem to enhance lithium compound characterization beyond what is achieved by either technique alone. The resulting spectral data are aggregated using data fusion and analyzed using chemometrics for …


Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino Jan 2021

Advanced Raman Spectroscopy Detection Of Oxidative Damage In Nucleic Acid Bases: Probing Chemical Changes And Intermolecular Interactions In Guanosine At Ultralow Concentration, Francesca Ripanti, Claudia Fasolato, Flavia Mazzarda, Simonetta Palleschi, Marina Ceccarini, Chunchun Li, Margherita Bignami, Enrico Bodo, Steven E.J. Bell, Filomena Mazzei, Paolo Postorino

Bioelectrics Publications

DNA/RNA synthesis precursors are especially vulnerable to damage induced by reactive oxygen species occurring following oxidative stress. Guanosine triphosphates are the prevalent oxidized nucleotides, which can be misincorporated during replication, leading to mutations and cell death. Here, we present a novel method based on micro-Raman spectroscopy, combined with ab initio calculations, for the identification, detection, and quantification of oxidized nucleotides at low concentration. We also show that the Raman signature in the terahertz spectral range (<100 >cm(-1)) contains information on the intermolecular assembly of guanine in tetrads, which allows us to further boost the oxidative damage detection limit. Eventually, we …


Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro Jan 2020

Modification Of The Optical Response Of Alpha Quartz Via The Deposition Of Gold Nanoparticles In Etched Ion Tracks, Maria C. Garcia Toro

Doctoral Dissertations

”This study addresses the experimental methods used to develop and characterize plasmonic devices capable of modifying the optical response of alpha quartz via the deposition of gold nanoparticles in etched ion tracks. In the first part of the research, the microstructural characterization of latent and etched ion tracks produced in alpha quartz (α-SiO2) is presented. Single crystals of α-SiO2 were irradiated with two highly energetic ions to different nominal fluences. As expected, the morphology of the resulting ion tracks depends on the energy of the incident ion and their stopping powers within the target material. Subsequent chemical …


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal May 2019

An In-Situ Study Of The Aqueous Speciation Of Uranium (Vi) Under Hydrothermal Conditions, Diwash Dhakal

MSU Graduate Theses

Rigorous study of the speciation distribution of uranyl-chloride bearing solutions under hydrothermal conditions is important to understand the transport mechanism of uranium underground, which is of uttermost interest to parties studying the geological uranium deposits and those studying the possibilities of geological repositories for spent nuclear waste. I report an in-situ Raman spectroscopic study of the speciation distribution of aqueous uranyl-chloride complexes upto 500°C conducted using a HDAC as the high PT spectroscopic cell. The samples studied contained the species UO22+, UO2Cl+, UO2Cl20 and UO2Cl3- …


Comparative Study Of Cv3 Carbonaceous Chondrites Allende And Bali Using Micro-Raman Spectroscopy And Sem/Eds, Raka Paul Jan 2018

Comparative Study Of Cv3 Carbonaceous Chondrites Allende And Bali Using Micro-Raman Spectroscopy And Sem/Eds, Raka Paul

All Graduate Theses, Dissertations, and Other Capstone Projects

The birth of the solar system (over 4 billion years) is speculated to have happened from a nebula, swirling and compacting in localized regions to eventually form the Sun and planets. This complex process consists of numerous changes and intermediary steps, yet to be fully understood. Carbonaceous chondritic meteorites are relics of that process and therefore have potential to reveal information about the formation history. Several theories have been formulated linking their composition to planet formation. This study focusses on two carbonaceous chondritic specimens, Allende and Bali, both of the group CV and petrologic type 3. CV meteorites are abundant …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason Hattrick-Simpers, Wilbur Hurst, Sesha Srinivasan, James Maslar Mar 2015

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason Hattrick-Simpers, Wilbur Hurst, Sesha Srinivasan, James Maslar

Jason R. Hattrick-Simpers

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …


Development Of Laser Spectroscopy For Elemental And Molecular Analysis, Yuan Liu Jan 2013

Development Of Laser Spectroscopy For Elemental And Molecular Analysis, Yuan Liu

Electronic Theses and Dissertations

Laser-Induced Breakdown Spectroscopy (LIBS) and Raman spectroscopy are still growing analytical and sensing spectroscopic techniques. They significantly reduce the time and labor cost in analysis with simplified instrumentation, and lead to minimal or no sample damage. In this dissertation, fundamental studies to improve LIBS analytical performance were performed and its fusion with Raman into one single sensor was explored. On the fundamental side, Thomson scattering was reported for the first time to simultaneously measure the electron density and temperature of laser plasmas from a solid aluminum target at atmospheric pressure. Comparison between electron and excitation temperatures brought insights into the …


Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman Aug 2011

Raman Spectroscopic Study Of Solid Solution Spinel Oxides, Brian D. Hosterman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solid solution spinel oxides of composition MgxNi1−xCr2O4, NiFexCr2−xO4, and FexCr3−xO4 were synthesized and characterized using x-ray diffraction and Raman spectroscopy. Frequencies of the Raman-active modes are tracked as the metal cations within the spinel lattice are exchanged. This gives information about the dependence of the lattice vibrations on the tetrahedral and octahedral cations. The highest-frequency Raman-active mode, A1g, is unaffected by substitution of the divalent tetrahedral cation, whereas the lower frequency vibrations are more strongly affected by substitution of the tetrahedral cation. The change in wavenumber of many phonons is nonlinear upon cation exchange. All detected modes of MgxNi1−xCr2O4 and …


Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar Jan 2011

Optical Cell For Combinatorial In Situ Raman Spectroscopic Measurements Of Hydrogen Storage Materials At High Pressures And Temperatures, Jason R. Hattrick-Simpers, Wilbur S. Hurst, Sesha S. Srinivasan, James E. Maslar

Faculty Publications

An optical cell is described for high-throughput backscattering Raman spectroscopic measurements of hydrogen storagematerials at pressures up to 10 MPa and temperatures up to 823 K. High throughput is obtained by employing a 60 mm diameter × 9 mm thick sapphire window, with a corresponding 50 mm diameter unobstructed optical aperture. To reproducibly seal this relatively large window to the cell body at elevated temperatures and pressures, a gold o-ring is employed. The sample holder-to-window distance is adjustable, making this cell design compatible with optical measurement systems incorporating lenses of significantly different focal lengths, e.g., microscope objectives and single element …


High Gain / Broadband Oxide Glasses For Next Generation Raman Amplifiers, Clara Rivero Jan 2005

High Gain / Broadband Oxide Glasses For Next Generation Raman Amplifiers, Clara Rivero

Electronic Theses and Dissertations

Interest in Raman amplification has undergone a revival due to the rapidly increasing bandwidth requirements for communications transmission, both for long haul and local area networks, and recent developments in the telecom fiber industry and diode laser technology. In contrast to rare earth doped fiber amplifiers, for which the range of wavelengths is fixed and limited, Raman gain bandwidths are larger and the operating wavelength is fixed only by the pump wavelength and the bandwidth of the Raman active medium. In this context, glasses are the material of choice for this application due to their relatively broad spectral response, and …


Towards Direct Writing Of 3-D Photonic Circuits Using Ultrafast Lasers, Arnaud Zoubir Jan 2004

Towards Direct Writing Of 3-D Photonic Circuits Using Ultrafast Lasers, Arnaud Zoubir

Electronic Theses and Dissertations

The advent of ultrafast lasers has enabled micromachining schemes that cannot be achieved by other current techniques. Laser direct writing has emerged as one of the possible routes for fabrication of optical waveguides in transparent materials. In this thesis, the advantages and limitations of this technique are explored. Two extended-cavity ultrafast lasers were built and characterized as the laser sources for this study, with improved performance over existing systems. Waveguides are fabricated in oxide glass, chalcogenide glass, and polymers, these being the three major classes of materials for the telecommunication industry. Standard waveguide metrology is performed on the fabricated waveguides, …


Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell Dec 2001

Laser Intensity Scaling Through Stimulated Scattering In Optical Fibers, Timothy H. Russell

Theses and Dissertations

The influence of stimulated scattering on laser intensity in fiber optic waveguides is examined. Stimulated Brillouin scattering (SBS) in long, multimode optical waveguides is found to generate a Stokes beam that propagates in the fiber LP01 mode. Additionally, the same process is found to combine multiple laser beams into a single spatially coherent source. Limitations in beam cleanup and combining are also investigated to identify ways to overcome them. The last portion of the dissertation theoretically examines suppression of stimulated Raman scattering in fibers to eliminate the restriction this imposes on the power of a fiber laser or amplifier. The …