Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

Theses/Dissertations

2021

Institution
Keyword
Publication

Articles 1 - 30 of 117

Full-Text Articles in Physics

Coherent Control Of Dispersive Waves, Jimmie Adriazola Dec 2021

Coherent Control Of Dispersive Waves, Jimmie Adriazola

Dissertations

This dissertation addresses some of the various issues which can arise when posing and solving optimization problems constrained by dispersive physics. Considered here are four technologically relevant experiments, each having their own unique challenges and physical settings including ultra-cold quantum fluids trapped by an external field, paraxial light propagation through a gradient index of refraction, light propagation in periodic photonic crystals, and surface gravity water waves over shallow and variable seabeds. In each of these settings, the physics can be modeled by dispersive wave equations, and the technological objective is to design the external trapping fields or propagation media such …


Experimental And Computational Studies Of Functionalized Carbon Nanotubes For Use In Energy Storage Devices And Membranes, Emine S. Karaman Dec 2021

Experimental And Computational Studies Of Functionalized Carbon Nanotubes For Use In Energy Storage Devices And Membranes, Emine S. Karaman

Dissertations

Electrolytes with good interfacial stability are a crucial component of any electrochemical device. The development of novel gel polymer electrolytes (GEs) with good interface stability and better manufacturability is important for the development of the next generation electrochemical devices. Gel electrolytes are hybrid electrolyte materials, combining benefits of both liquid and solid systems. Compared with liquid and solid electrolytes, GEs open new design opportunities and do not require rigorous encapsulation methods. In this dissertation, studies on functionalized carbon nanotubes (fCNTs) and graphene oxide (GO) doped polyvinyl alcohol (PVA) based gel electrolytes (GEs) are reported. The ionic conductivity and mechanical strength …


Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei Dec 2021

Electric-Field-Driven Processes In Multiphase Fluid Systems, Qian Lei

Dissertations

Advantages of using electric fields in miniaturized apparatuses for a wide range of applications are revealed by numerous experimental and theoretical studies over the last several decades as it offers a simple and efficient method for manipulation of multiphase fluid systems. This approach is considered to be especially beneficial for control of boiling processes and colloidal suspensions considered in the presented work.

Boiling. Today's trends for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles to prevent formation of a vapor layer over the surface at a high overheat. In contrast, this dissertation presents a …


Droplet-Based Fuel Property Measurements, Wanjun Dang Dec 2021

Droplet-Based Fuel Property Measurements, Wanjun Dang

LSU Doctoral Dissertations

Ongoing work to find renewable biofuels to function as drop-in replacements or blending components with gasoline has identified a large number of fuel candidates. Given the vast number of potential biomass-derived fuel molecules and limited sample sizes, screening tools are required to down-select candidate fuels having desired physical properties to ensure good engine performance. This work investigates approaches for rapid screening of candidate fuels using micro-liter sample sizes targeting four properties -- surface tension, viscosity, heat of vaporization (HOV), and vapor pressure. Measurement techniques for fuel properties are developed based on unit phenomena for liquid fuel droplets including droplet oscillation …


Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman Dec 2021

Intracavity Phase Interferometry Based Fiber Sensors, Luke Jameson Horstman

Optical Science and Engineering ETDs

Intracavity Phase Interferometry (IPI) is a detection technique that exploits the inherent sensitivity of a laser's frequency to the parameters of its cavity. Intracavity interferometry is orders of magnitude more sensitive than its extracavity alternatives. This dissertation improves on previous free-space proof-of-concept designs. By implementing the technique in fiber optics, using optical parametric oscillation, and investigating non-Hermitian quantum mechanics and dispersion tailoring enhancement techniques, IPI has become more applicable and sensitive. Ring and linear IPI configurations were realized in this work, both operating as bidirectional fiber optical parametric oscillators. The benefit of using externally pumped synchronous optical parametric oscillation is …


Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer Dec 2021

Ultrafast Spectroscopy Of Air Lasing In Filaments, Brian Robert Kamer

Optical Science and Engineering ETDs

Filamentation in air is a phenomenon that has been extensively investigated for the last two decades. At sufficiently high intensity, even air is a nonlinear medium. These intensities are reached with ultrashort pulses (50 to 100 fs) of more than 1 J energy, which self-focus in air, reach ionizing intensities of oxygen and nitrogen, creating a plasma that defocuses the beam. The air filament is a self-induced waveguide resulting from a balance of focusing and defocusing. In this work new techniques were developed to visualize and analyze this phenomenon through its emission, in particu- lar the UV emission of the …


Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers Dec 2021

Impurity Production And Transport In The Prototype Material Plasma Exposure Experiment, Clyde J. Beers

Doctoral Dissertations

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear pulse plasma device at Oak Ridge National Laboratory with the purpose of doing the research and development for the heating concepts on the planned full MPEX device. The goal of MPEX is to perform material studies at fusion relevant conditions. To understand the conditions at the material target for performing plasma-material interaction studies the ion temperature and density, the electron temperature and density, and the particle flux and fluence must be known. Impurities within Proto-MPEX can alter the desired conditions at the material target and need to be understood for …


Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes Dec 2021

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes

Graduate Theses and Dissertations

Li-ion batteries are widely used due to the large amount of rechargeable energy they pack into a small, light package. This higher energy density makes Li-ion batteries ideal for small satellite applications, specifically CubeSats. CubeSats have grown in popularity in higher level education due to the National Aeronautics and Space Administration’s implementation of the Cube Satellite Launch Initiative, making it easier and cheaper to conduct small, low orbit missions. Because these CubeSats are occupying the same space as a crewed spacecraft, it is imperative that they are safe. There are numerous reports of Li-ion batteries creating fires that result in …


Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah Dec 2021

Production Of Protactinium-229 Via Deuteron Irradiation Of Thorium-232, Naser Burahmah

Doctoral Dissertations

225Ac [Actinium-225] is a promising radionuclide for targeted alpha therapy of cancer. 229Pa can lead to the production of 229Th [Thorium-229] and 225Ac [Actinium-225]. Deuteron bombardment on natural thorium targets has been investigated to measure cross sections of protactinium isotopes. In this work, 229Pa [Protactinium-229] excitation function was measured via deuteron energies up to 50 MeV [Mega electron volt] of thin thorium foils. The irradiation took place at Lawrence Berkeley National Laboratory’s (LBNL) 88-Inch Cyclotron. The target processing and analysis were performed at Oak Ridge National Laboratory (ORNL). The target consisted of 4 thin foils …


Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo Dec 2021

Dreams Of Molecular Beams: Indium Gallium Arsenide Tensile-Strained Quantum Dots And Advances Towards Dynamic Quantum Dots (Moleculare Radiorum Somnia: Indii Gallii Arsenicus Tensa Quanta Puncta Et Ad Dinamicae Quantae Puntae Progressus), Kevin Daniel Vallejo

Boise State University Theses and Dissertations

Through the operation of a molecular beam epitaxy (MBE) machine, I worked on developing the homoepitaxy of high quality InAs with a (111)A crystallographic orientation. By tuning substrate temperature, we obtained a transition from a 2D island growth mode to step- ow growth. Optimized MBE parameters (substrate temperature = 500 °C, growth rate = 0.12 ML/s and V/III ratio ⩾ 40) lead to growth of extremely smooth InAs(111)A films, free from hillocks and other 3D surface imperfections. We see a correlation between InAs surface smoothness and optical quality, as measured by photoluminescence spectroscopy. This work establishes InAs(111)A as a platform …


Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar Dec 2021

Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar

Electronic Theses and Dissertations, 2020-

For two decades, extraordinary optical transmission (EOT) has amplified exploration into subwavelength systems. Researchers have previously suggested exploiting the spectrally selective electromagnetic field confinement of subwavelength cavities for multispectral detectors. Utilizing the finite-difference frequency domain (FDFD) method, we examine electromagnetic field confinement in both 2-dimensional and 3-dimensional scenarios from 2.5 to 6 microns (i.e., mid-wave infrared or MWIR). We explore the trade space of deep subwavelength cavities and its impact on resonant enhancement of the electromagnetic field. The studies provide fundamental understanding of the coupling mechanisms allowing for prediction of resonant spectral behavior based on cavity geometry and material properties. …


Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou Dec 2021

Sigesn Light-Emitting Devices: From Optical To Electrical Injection, Yiyin Zhou

Graduate Theses and Dissertations

Si photonics is a fast-developing technology that impacts many applications such as data centers, 5G, Lidar, and biological/chemical sensing. One of the merits of Si photonics is to integrate electronic and photonic components on a single chip to form a complex functional system that features compact, low-cost, high-performance, and reliability. Among all building blocks, the monolithic integration of lasers on Si encountered substantial challenges. Si and Ge, conventional epitaxial material on Si, are incompetent for light emission due to the indirect bandgap. The current solution compromises the hybrid integration of III-V lasers, which requires growing on separate smaller size substrates …


Interplay Between The Lattice And Spin Degrees Of Freedom In Magnetoelectric And Magnetic Materials, Temuujin Bayaraa Dec 2021

Interplay Between The Lattice And Spin Degrees Of Freedom In Magnetoelectric And Magnetic Materials, Temuujin Bayaraa

Graduate Theses and Dissertations

This dissertation contains several investigations on the cross-coupling between structural and spin degrees of freedom in multiferroic and ferrimagnetic compounds by means of first-principles calculations and ab-initio-based Monte-Carlo simulations. We start with the reviews of magnetoelectricity, ferrimagnetism, strain engineering, followed by a brief introduction to first-principles computational methods, magnetic effective Hamiltonians, and other techniques that are utilized here. The results section of the dissertation can be divided into two parts. The first half focuses on magnetoelectric effects arising from different sources, while the second half is about the ferrimagnetic nature of materials. In the first part, we examine the epitaxial …


Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili Dec 2021

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili

Computational and Data Sciences (PhD) Dissertations

Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look …


Hybrid Two Dimensional Quantum Devices, Joshua Patrick Thompson Dec 2021

Hybrid Two Dimensional Quantum Devices, Joshua Patrick Thompson

Graduate Theses and Dissertations

This thesis describes measurements on hybrid material systems involving two dimensional (2D) materials and phenomena along with the development of a small, hermetically sealed cell. The hermetic cell is designed to assist with analyzing sensitive 2D materials outside of an inert environment. When working with van der Waals materials that are especially sensitive to oxygen or water, it can be difficult to identify usable thin flakes without exposing them to air. To help preserve materials for analysis in air, a capsule was designed that isolates the material in an inert environment. Although the capsule is hermetically sealed, the encapsulated material …


Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha Dec 2021

Two-Dimensional Black Phosphorus For Terahertz Emission And Near-Field Radiative Heat Transfer, Mahmudul Hasan Doha

Graduate Theses and Dissertations

The main focus of this work is to investigate two potential optical and optoelectronic applications of black phosphorus (BP): the near-field radiative heat transfer in plasmonic heterostructures with graphene and terahertz emission from multi-layer BP photoconductive antennas. When the separation distance between graphene-black phosphorene is much smaller than or comparable to the thermal wavelength at different temperatures, a near-field radiation heat transfer breaks the Planck blackbody limit. The magnitude of the near-field radiation enhancement acutely depends on the gate voltage, doping, and vacuum gap of the graphene and BP pair. The strong near-field radiation heat transfer enhancement of the specific …


Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams Dec 2021

Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams

Legacy Theses & Dissertations (2009 - 2024)

The introduction of low dielectric constant materials within the integrated circuit (IC) chip technology industry was a concerted effort to decrease the resistance-capacitance (RC) time delay inherent within the dielectric materials used as insulators. This stems from a demand for greater device density per IC chip and decreased feature sizes but is fast becoming a reliability issue. Concomitant with the demand for decreased feature sizes, also in adherence with Moore’s Law (which states that the number of devices on a die doubles every two years), is a reduction in device speed and performance due to device intra-level interconnection signal delays. …


Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola Dec 2021

Investigation Of Optical And Structural Properties Of Gesn Heterostructures, Oluwatobi Gabriel Olorunsola

Graduate Theses and Dissertations

Silicon (Si)-based optoelectronics have gained traction due to its primed versatility at developing light-based technologies. Si, however, features indirect bandgap characteristics and suffers relegated optical properties compared to its III-V counterparts. III-Vs have also been hybridized to Si platforms but the resulting technologies are expensive and incompatible with standard complementary-metal-oxide-semiconductor processes. Germanium (Ge), on the other hand, have been engineered to behave like direct bandgap material through tensile strain interventions but are well short of attaining extensive wavelength coverage. To create a competitive material that evades these challenges, transitional amounts of Sn can be incorporated into Ge matrix to form …


Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman Dec 2021

Towards Long Term Colloid Suspension In A Vertically Rotated System., Md Mahmudur Rahman

Electronic Theses and Dissertations

Within a colloidal suspension gravity may compromise the observation of governing physical interactions, especially those that are weak and/or take significant time to develop. Conducting the experiment in a long-term microgravity environment is a viable option to negate gravitational effects, though significant resources are required to do so. While it may not be possible to simulate long-term microgravity terrestrially, particles can resist quick sedimentation in a confined suspension system rotating vertically with appropriate rotation speed. The goal of the investigation is to demonstrate the existence of long-term particle suspension regime for a certain colloidal suspension while characterizing colloidal behavior due …


Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan Nov 2021

Interferometric Lithography- An Approach To Large Area And Cost Effective Nanopatterning, Vineeth Sasidharan

Optical Science and Engineering ETDs

In this dissertation interferometric lithography is approached in two different ways to address two important constraints of nanopatterning. One approach solves the problem of scaling up interferometric lithography to wafer scale (4 inch or larger) area. Through the second approach we have developed a nanopatterning technique based on interferometric lithography by using an inexpensive (~$100) diode laser as source, making interferometric lithography a very cost-effective technique.

Wafer-scale large-area nanopatterning was developed using an amplitude grating mask as a grating beam splitter along with spatial averaging of laser intensity by wobbling. The longitudinal and transverse coherence issues both are eased by …


The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr Nov 2021

The Profound Photophysical Effects Of Organic Chromophore Connectivity And Coupling, David J. Walwark Jr

Nanoscience and Microsystems ETDs

Through-bond and through-space interactions between chromophores are shown to have wide-ranging effects on photophysical outcomes upon light absorption in organic molecules. In collapsed poly(3-hexylthiophene), through-space coupling creates hybrid chromophores that act as energy sinks for nearby excitons and favorable sites for molecular oxygen to dock. Upon excitation with visible light the highly-coupled chromophores react with the docked oxygen and subsequently do not quench nearby excitons as efficiently. In tetramer arrays of perylene diimide chromophores the central moiety through-bond connectivity is synthesized in two variants which exhibit vastly different single-molecule blinking behavior and theoretically-predicted electronic transition character. In the more-connected tetramer …


Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams Nov 2021

Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams

USF Tampa Graduate Theses and Dissertations

The prediction of the structure of a crystal given only the constituent elements is one of the greatest challenges in both materials science and computational science alike. If one were to try to predict a novel crystal by brute force, meaning by arranging the atoms in every possible position of the unit cell and optimizing the geometry to find the energy minima of the potential energy surface, the amount of computer resources required to complete the calculation on the timescale of a few years would vastly exceed the currently installed computational capacity of the entire world. Fortunately, several methods have …


Texturing In Bi2Te3 Alloy Thermoelectric Materials: An Applied Physics Investigation, Oluwagbemiga P. Ojo Oct 2021

Texturing In Bi2Te3 Alloy Thermoelectric Materials: An Applied Physics Investigation, Oluwagbemiga P. Ojo

USF Tampa Graduate Theses and Dissertations

Thermoelectric devices provide the means for direct conversion between heat and electricity. The device conversion efficiency, or performance, is directly related to the thermoelectric figure of merit, ZT, of the working materials. Bismuth telluride alloys are the materials currently in use in most thermoelectric devices for near room temperature solid-state refrigeration and power conversion applications. The vast majority of publications in the literature on thermoelectricity report on investigations towards developing new materials with enhanced thermoelectric properties, however Bi2Te3 alloys have been used in thermoelectric devices for decades.

In this thesis, an investigation of crystallographic texturing on large …


Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh Oct 2021

Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh

Masters Theses

Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that …


Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz Oct 2021

Non-Circular Hydraulic Jumps Due To Inclined Jets, Ahmed Mohamed Abdelaziz

Electronic Thesis and Dissertation Repository

When a laminar inclined circular jet impinges on a horizontal surface, it forms a non-circular hydraulic jump governed by a non-axisymmetric flow. In this thesis, we use the boundary-layer and thin-film approaches in the three dimensions to theoretically analyse such flow and the hydraulic jumps produced in such cases. We particularly explore the interplay among inertia, gravity, and the effective inclination angle on the non-axisymmetric flow.

The boundary-layer height is found to show an azimuthal dependence at strong gravity level only; however, the thin film thickness as well as the hydraulic jump profile showed a strong non-axisymmetric behaviour at all …


The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse Sep 2021

The Return To Anisotropy Across A Jet In Crossflow, Gregory P. Sakradse

Dissertations and Theses

With data from experiments on a jet of air emitting from an orifice flush with the floor of a wind tunnel providing a transverse flow, analysis is conducted to extract information about the state of anisotropy in the Reynolds stress tensor. Inflow velocities are modulated across two distinct turbulence intensity regimes while holding jet exit conditions constant, providing an opportunity to isolate effects of both jet to crossflow velocity ratio, r and the effects of the turbulence carried by the crossflow. Anisotropy in the Reynolds stress tensor is examined through anisotropy invariant maps and evolution of the function F, …


Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang Sep 2021

Molecular Dynamics Simulations Of Self-Assemblies In Nature And Nanotechnology, Phu Khanh Tang

Dissertations, Theses, and Capstone Projects

Nature usually divides complex systems into smaller building blocks specializing in a few tasks since one entity cannot achieve everything. Therefore, self-assembly is a robust tool exploited by Nature to build hierarchical systems that accomplish unique functions. The cell membrane distinguishes itself as an example of Nature’s self-assembly, defining and protecting the cell. By mimicking Nature’s designs using synthetically designed self-assemblies, researchers with advanced nanotechnological comprehension can manipulate these synthetic self-assemblies to improve many aspects of modern medicine and materials science. Understanding the competing underlying molecular interactions in self-assembly is always of interest to the academic scientific community and industry. …


Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver Sep 2021

Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver

Theses and Dissertations

This dissertation covers nanosecond pulsed laser ablation of graphite for 4-5.7 J/cm2 fluences with 248 nm and 532 nm lasers in 1-180 Torr helium, argon, nitrogen, air, and mixed gas. Three experiments were performed to improve the interpretation of common diagnostics used to characterize pulsed laser ablation, find simple but universal scaling relationships for comparing dynamics across different materials and ablation conditions, and provide a systematic analysis of graphite emissive plume and shock wave dynamics. A scaling of the Sedov-Taylor energy ratio was developed and validated for a range of studies despite differences in wavelength, pulse duration, fluence, and …


Neutron Energy Tuning Assemblies For Nuclear Weapon Environment Applications At The National Ignition Facility, Nicholas J. Quartemont Sep 2021

Neutron Energy Tuning Assemblies For Nuclear Weapon Environment Applications At The National Ignition Facility, Nicholas J. Quartemont

Theses and Dissertations

An energy tuning assembly was developed to spectrally shape the National Ignition Facility deuterium-tritium fusion neutron source to a notional thermonuclear and prompt fission neutron spectrum to fulfill neutron source capability gaps. The experimental neutron environment was characterized with activation dosimetry, neutronics and covariance models, and unfolded to determine the as-fielded neutron spectrum. The first energy tuning assembly was demonstrated to create synthetic spectrally accurate post-detonation fission products, enhancing U.S. technical nuclear forensics capabilities. ATHENA, a second-generation energy tuning assembly, was also optimized to meet similar objectives, but the new platform neutron fluence efficiency was increased by a factor of …


Colloidal Quantum Dot (Cqd) Based Mid-Wavelength Infrared Optoelectronics, Shihab Bin Hafiz Aug 2021

Colloidal Quantum Dot (Cqd) Based Mid-Wavelength Infrared Optoelectronics, Shihab Bin Hafiz

Dissertations

Colloidal quantum dot (CQD) photodetectors are a rapidly emerging technology with a potential to significantly impact today’s infrared sensing and imaging technologies. To date, CQD photodetector research is primarily focused on lead-chalcogenide semiconductor CQDs which have spectral response fundamentally limited by the bulk bandgap of the constituent material, confining their applications to near-infrared (NIR, 0.7-1.0 um) and short-wavelength infrared (SWIR, 1-2.5 um) spectral regions. The overall goal of this dissertation is to investigate a new generation of CQD materials and devices that advances the current CQD photodetector research toward the technologically important thermal infrared region of 3-5 ?m, known as …