Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physics

Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley Dec 2016

Beta-Delayed Neutron Data And Models For Scale, Kemper Dyar Talley

Doctoral Dissertations

Recent advancements in experimental and theoretical nuclear physics have yielded new data and models that more accurately describe the decay of fission products compared to historical data currently used for many applications. This work examines the effect of the adopting the Effective Density Model theory for beta-delayed neutron emission probability on calculations of delayed-neutron production and fission product nuclide concentrations after fission bursts as well as the total delayed neutron fraction in comparison with the Keepin 6-group model. We use ORIGEN within the SCALE code package for these calculations. We show quantitative changes to the isotopic concentrations for fallout nuclides …


Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat Dec 2016

Large Scale Brownian Dynamics Simulation Of Dilute And Semidilute Polymeric Solutions, Amir Saadat

Doctoral Dissertations

Excluded Volume (EV) and Hydrodynamic Interactions (HI) play a central role in static and dynamic properties of macromolecules in solution under equilibrium and nonequilibrium settings. The computational cost of incorporating HI in mesoscale Brownian dynamics (BD) simulations, particularly in the semidilute regime has motivated significant research aimed at development of high-fidelity and efficient techniques.

In this study, I have developed several algorithms for the mesoscale bead-spring representation of a macromolecular solution in dilute and semidilute regimes. The Krylov subspace method enables fast calculation of single chain dynamics with simulation time scaling of O(Nb2) [order N …


A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles Aug 2016

A Generalized Method For Fissile Material Characterization Using Short-Lived Fission Product Gamma Spectroscopy, Justin Richard Knowles

Doctoral Dissertations

Characterizing the fissile content of nuclear materials is of particular interest to the safeguards and nuclear forensics communities. Short-lived fission product gamma spectroscopy offers a significant reduction in analysis time and detection limits when compared to traditional non-destructive assay measurements. Through this work, a fully generalizable method that can be applied to variations in fissile compositions and neutron spectra was developed for the modeling and measurement of short-lived fission product gamma-rays. This method uses a 238-group neutron flux that was characterized for two pneumatic tube positions in the High Flux Isotope Reactor using flux monitor irradiations. This flux spectrum was …


Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin Aug 2016

Characterizing Local Order And Physical Properties Of Rare Earth Complex Oxides, Thomas Jacob Shamblin

Doctoral Dissertations

With more than 500 compositions, materials possessing the pyrochlore structure have a myriad of technological applications and physical phenomena. Three of the most noteworthy properties are the structure’s ability to resist amorphization making it a possible host matrix for spent nuclear fuel, its exotic magnetic properties arising from geometric frustration, and fast ionic conductivity for solid-oxide fuel cell applications. This work focuses on these three aspects of the pyrochlore’s many potential uses. Structural characterization revealed that pyrochlore-type oxides have a tendency to disorder from a high symmetry cubic structure to a lower symmetry orthorhombic arrangement in response to a variety …


Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold Aug 2016

Actinium-225 Production Via Proton Irradiation Of Thorium-232, Justin Reed Griswold

Doctoral Dissertations

High energy proton spallation reactions on natural thorium metal targets have been utilized to produce multi mCi [milliCurie] quantities of Actinium-225. Theoretical cross sections for actinium and thorium isotopes as well as for a select number of the fission products produced in these reactions were generated by the Monte Carlo radiation transport code PHITS to simulate the experimental data obtained from sixteen irradiations of thorium metal targets with 25-210 µA [microampere] proton beams ranging in energies from 77 to 192 MeV. Irradiations were conducted at Brookhaven National Laboratory (BNL) and Los Alamos National Laboratory (LANL), while target dissolution and processing …


Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist Jul 2016

Experimental Investigation And Numerical Simulation Of A Copper Micro-Channel Heat Exchanger With Hfe-7200 Working Fluid, Eric Borquist

Doctoral Dissertations

Ever increasing cost and consumption of global energy resources has inspired the development of energy harvesting techniques which increase system efficiency, sustainability, and environmental impact by using waste energy otherwise lost to the surroundings. As part of a larger effort to produce a multi-energy source prototype, this study focused on the fabrication and testing of a waste heat recovery micro-channel heat exchanger. Reducing cost and facility requirements were a priority for potential industry and commercial adoption of such energy harvesting devices. During development of the micro-channel heat exchanger, a new fabrication process using mature technologies was created that reduced cost, …


Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi May 2016

Symbiotic Plasmonic Nanomaterials: Synthesis And Properties, Abhinav Malasi

Doctoral Dissertations

Metal particles of the dimensions of the order of 1 to 100's of nanometers show unique properties that are not clearly evident in their bulk state. These nanoparticles are highly reactive and sensitive to the changes in the vicinity of the particle surface and hence find applications in the field of sensing of chemical and biological agents, catalysis, energy harvesting, data storage and many more. By synthesizing bimetallic nanoparticles, a single nanoparticle can show multifunctional characteristics. The focus of this thesis is to detail the synthesis and understand the properties of bimetallic nanomaterial systems that show interesting optical, chemical, and …


Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett May 2016

Pulsed-Laser Induced Dewetting Of Metallic Nanostructures, Christopher Aidan Hartnett

Doctoral Dissertations

This dissertation explores the fluid dynamics of nano and microscale liquid metal filaments, with an emphasis on experimentally investigating the influences and causes of filament breakup and metallic nanostructure formation. Understanding and manipulating the liquid state properties of materials, especially metals, have the potential to advance the development of future technology, particularly nanoscale technology. The combination of top-down nanofabrication techniques with bottom-up, intrinsic self-assembly mechanisms are a powerful fusion, because it permits new and unusual nanostructures to be created, whilst revealing interesting nanoscale physics.

In fluid dynamics, wetting and dewetting is the spontaneous natural process that occurs when a liquid …


Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister May 2016

Investigation Of Langmuir Probes In Non-Maxwellian Plasma Using Particle-In-Cell (Pic) Modeling, Densu Aktas Lister

Doctoral Dissertations

This dissertation explores the development of a capability for simulating the plasma dynamics of Langmuir probes (LP) in complex plasmas where the velocity distributions are non-equilibrium and the electron energy spectrum is non-Maxwellian with respect to laboratory and space experiments. The results of this investigation are interpreted to give recommendations for design and use of LPs. This work is conducted using computational techniques to create the exact plasma conditions of the experimental testing environments. The investigations address the following topics:

  • development of a technique to model non-Maxwellian physics,
  • modification of a baseline-technique and optimization of it for this application,
  • creation …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …