Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova Jan 2019

Mode Transition In Conventional Step-Index Optical Fibers, Xiaokang Lian, Gerald Farrell, Qiang Wu, Wei Han, Fangfang Wei, Yuliya Semenova

Conference Papers

The discrete self-imaging effect reveals the distinct properties of cladding modes with core modes in step-index optical fibers, as was shown in our previous work [1], where only the linearly polarized LP0n modes were studied. In this paper, the dispersion diagram of the first 17 vector modes (TE0n, TM0n, HEmn and EHmn) and the related first 9 LPmn modes are calculated by both the full-vector finite element method and the graphical method with a three-layer step-index optical fiber model. The cladding modes distributions and the transitions between the core and cladding modes are analyzed. The results of this work are …


Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova Jan 2019

Sensing Of Multiple Parameters With Whispering Gallery Mode Optical Fiber Micro-Resonators, Arun Kumar Mallik Dr, Vishnan Kavungal, Gerald Farrell, Yuliya Semenova

Conference Papers

Monitoring of multiple physical parameters, such as humidity, temperature, strain, concentrations of certain chemicals or gases in various environments is of great importance in many industrial applications both for minimizing adverse effects on human health as well as for maintaining production levels and quality of products. In this paper we demonstrate two different approaches to the design of multi-parametric sensors using coupled whispering gallery mode (WGM) optical fiber micro-resonators. In the first approach, a small array of micro-resonators is coupled to a single fiber taper, while in the second approach each of the micro-resonators within an array is coupled to …


Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin Jan 2019

Theoretical Analysis Of A Volume Holographic Lens Using Matlab, Sanjay Keshri, Kevin Murphy, Izabela Naydenova, Suzanne Martin

Conference Papers

Volume holographic lenses have great potential for different types of applications requiring light redirection and beam shaping such as solar light collection and LED light management. For lighting applications using LEDs, it is essential to make a highly efficient optical element to be placed in front of the LED in order to decrease energy losses. For that reason, a careful theoretical analysis of the properties and operation regime of the lens must be carried out at the design stage. The characteristics of focusing Holographic Optical Elements (HOE) depend on many factors including their thickness, spatial frequency, the angular range of …


A Transfer Matrix Approach To Aid In The Design And Optimization Of Hybrid Advanced Passive Structures For Enhancing Photovoltaic Efficiency, James Walshe, Sarah Mccormack, Hind Ahmed, John Doran Jan 2017

A Transfer Matrix Approach To Aid In The Design And Optimization Of Hybrid Advanced Passive Structures For Enhancing Photovoltaic Efficiency, James Walshe, Sarah Mccormack, Hind Ahmed, John Doran

Conference Papers

The addition of a luminescent down-shifting (LDS) layer directly onto a photovoltaic (PV) cell introduces additional loss mechanisms within the system. The combination of non-ideal photo-luminescent materials encapsulated within a limited range of viable host materials, with the increased reflection losses arising from the newly created interface represent losses which must be overcome for LDS to offer an enhancement to the underlying cells efficiency. Exploiting the interaction between the highly enhanced electric fields established close to a metal nanoparticles (MNP’s) surface is one route aimed at mitigating the poor optical properties of the luminophore-host combinations available. Alternative approaches, aimed at …


Available Work Rate Of A Reversible System Bounded By Constant Thermal Resistances Linked To Isothermal Reservoirs, Jim Mcgovern May 2015

Available Work Rate Of A Reversible System Bounded By Constant Thermal Resistances Linked To Isothermal Reservoirs, Jim Mcgovern

Conference Papers

Exergy analysis is based on the concept of an idealized, all-enclosing reference environment that has infinite heat capacity and thermal conductivity, and is in equilibrium. The actual surroundings of a real plant such as a heat engine, a heat pump or a refrigerator may differ significantly from the ideal. First law performance parameters and second law rational efficiency are examined. The concepts of finite time thermodynamics are applied in an attempt to refine the concept of T0, the environmental reference temperature, thereby making exergy analysis more reflective of reality.


Real Time Shrinkage Studies In Photopolymer Films Using Holographic Interferometry, Mohesh Moothanchery, Izabela Naydenova, Viswanath Bavigadda, Suzanne Martin, Vincent Toal May 2012

Real Time Shrinkage Studies In Photopolymer Films Using Holographic Interferometry, Mohesh Moothanchery, Izabela Naydenova, Viswanath Bavigadda, Suzanne Martin, Vincent Toal

Conference Papers

Polymerisation induced shrinkage is one of the main reasons why photopolymer materials are not more widely used for holographic applications. The aim of this study is to evaluate the shrinkage in an acrylamide photopolymer layer during holographic recording using holographic interferometry. Shrinkage in photopolymer layers can be measured by real time capture of holographic interferograms during holographic recording. Interferograms were captured using a CMOS camera at regular intervals. The optical path length change and hence the shrinkage were determined from the captured fringe patterns. It was observed that the photopolymer layer shrinkage is in the order of 3.5%.


Creating A Uniform Magnetic Field For The Equi-Biaxial Physical Testing Of Magnetorheological Elastomers; Electromagnet Design, Development And Testing., Dave Gorman, Stephen Jerrams, Ray Ekins, Niall Murphy Sep 2011

Creating A Uniform Magnetic Field For The Equi-Biaxial Physical Testing Of Magnetorheological Elastomers; Electromagnet Design, Development And Testing., Dave Gorman, Stephen Jerrams, Ray Ekins, Niall Murphy

Conference Papers

No abstract provided.


An Exploration Of A Discrete Rhombohedral Lattice Of Possible Engineering Or Physical Relevance (Revised Version) 2008, Jim Mcgovern Jun 2008

An Exploration Of A Discrete Rhombohedral Lattice Of Possible Engineering Or Physical Relevance (Revised Version) 2008, Jim Mcgovern

Conference Papers

A particular discrete rhombohedral lattice consisting of four symmetrically interlaced cuboctahedral point lattices is described that is interesting because of the high degree of symmetry it exhibits. The four constituent cuboctahedral lattices are denoted by four colours and the composite lattice is referred to as a 4-colour rhombohedral lattice. Each point of the 4-colour lattice can be referenced by an integer 4-tuple containing only the positive non-zero integers (the counting numbers). The relationship between the discrete rhombohedral lattice and a discrete Cartesian lattice is explained. Some interesting aspects of the lattice and of the counting-number 4-tuple coordinate system are pointed …


An Exploration Of A Discrete Rhombohedral Lattice Of Possible Engineering Or Physical Relevance, Jim Mcgovern Jun 2008

An Exploration Of A Discrete Rhombohedral Lattice Of Possible Engineering Or Physical Relevance, Jim Mcgovern

Conference Papers

A particular discrete rhombohedral lattice consisting of four symmetrically interlaced cuboctahedral or cubic point lattices is described that is interesting because of the high degree of symmetry it exhibits. The four constituent lattices are denoted by four colours and the composite lattice is referred to as a 4-colour rhombohedral lattice. Each point of the 4-colour lattice can be referenced by an integer 4-tuple containing only the positive non-zero integers (the counting numbers). The relationship between the discrete rhombohedral lattice and a discrete Cartesian lattice is explained. Some interesting aspects of the lattice and of the counting-number 4-tuple coordinate system are …