Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physics

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen Jan 1993

Temporal Development Of Electric Field Structures In Photoconductive Gaas Switches, K. H. Schoenbach, J. S. Kenney, F.E. Peterkin, R. J. Allen

Bioelectrics Publications

The temporal development of the electric field distribution in semi‐insulating GaAs photoconductive switches operated in the linear and lock‐on mode has been studied. The field structure was obtained by recording a change in the absorption pattern of the switch due to the Franz–Keldysh effect at a wavelength near the band edge of GaAs. In the linear mode, a high field layer develops at the cathode contact after laser activation. With increasing applied voltage, domainlike structures become visible in the anode region and the switch transits into the lock‐on state, a permanent filamentary electrical discharge. Calibration measurements show the field intensity …


Glow-Discharge Enhanced Permeation Of Oxygen Through Silver, D. Wu, R. A. Outlaw, Robert L. Ash Jan 1993

Glow-Discharge Enhanced Permeation Of Oxygen Through Silver, D. Wu, R. A. Outlaw, Robert L. Ash

Mechanical & Aerospace Engineering Faculty Publications

The permeation of oxygen through Ag0.05Zr over the temperature range of 300-650°C under glow-discharge conditions has been studied and compared to the permeation of thermally dissociated molecular oxygen. A low-energy dc glow-discharge in O2 has been employed which produced approximately 10% atoms. The permeation rate during the glow discharge was found to be much higher (a factor of ∼10) than without the glow discharge. The small fraction of oxygen atoms generated appears to dominate the permeation because of much higher solution probabilities. Below 500°C, the activation energy for the permeation with glow discharge was found to be 15.5 kcal/mol …


A Magnetic Suspension System With A Large Angular Range, Colin P. Britcher, Mehran Ghofrani Jan 1993

A Magnetic Suspension System With A Large Angular Range, Colin P. Britcher, Mehran Ghofrani

Mechanical & Aerospace Engineering Faculty Publications

In order to explore and develop technology required for the magnetic suspension of objects over large ranges of orientation, a small-scale laboratory system, the large-angle magnetic suspension test fixture (LAMSTF) has been constructed at NASA Langley Research Center. This apparatus falls into the category of large-gap, actively stabilized magnetic levitation systems. The hardware comprises five conventional electromagnets in a circular arrangement, each driven from a separate bipolar power amplifier. Electromagnet currents are commanded by a digital control system, implemented on a microcomputer, which in turn derives the position and attitude of the suspended element from an infrared optical system. The …


Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow Jan 1993

Paschen's Law For A Hollow Cathode Discharge, H. Eichhorn, K. H. Schoenbach, T. Tessnow

Bioelectrics Publications

An expression for the breakdown voltage of a one‐dimensional hollow cathode discharge has been derived. The breakdown condition which corresponds to Paschen’s law contains, in addition to the first Townsend coefficient, and the secondary electron emission coefficient two parameters which characterize the reflecting action of the electric field and the lifetime of the electrons in the discharge. The breakdown voltage for a hollow cathode discharge in helium was calculated and compared to that of a glow discharge operating under similar conditions.


Direct Measurements Of The Transport Of Nonequilibrium Electrons In Gold Films With Different Crystal Structures, T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suárez, W. E. Bron Jan 1993

Direct Measurements Of The Transport Of Nonequilibrium Electrons In Gold Films With Different Crystal Structures, T. Juhasz, H. E. Elsayed-Ali, G. O. Smith, C. Suárez, W. E. Bron

Electrical & Computer Engineering Faculty Publications

The transport of femtosecond-laser-excited nonequilibrium electrons across polycrystalline and single-crystalline gold films has been investigated through time-of-flight measurements. The thicknesses of the films range from 25 to 400 nm. Ballistic electrons as well as electrons interacting with other electrons and/or with the lattice have been observed. The ballistic component dominates the transport in the thinner films, whereas the interactive transport mechanism is dominant at the upper end of the thickness range. A slower effective velocity of the interactive component is observed in the polycrystalline samples, and is assumed to arise from the presence of grain boundaries. The reflection coefficient of …