Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physics

Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami Aug 2020

Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami

Physics

In developing countries, the use of wood burning fires for cooking is cause for illness and death. With this in mind, research was conducted to develop a solar cooking device capable of cooking of soup within 15 mins in order to reduce the negative impacts of cooking with wood. Current methods of solar-based cooking, such as solar concentrators and solar tube ovens, are impractical. A small solar panel is a cost-effective way to produce energy but will not produce enough power to cook within a reasonable amount of time. Even if it is assumed that all of the energy produced …


Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin Jun 2020

Mechani-Kits Senior Design Project, Jake Utley, Sophie Carson, Vincent Seguin

Mechanical Engineering

Studies suggest that when designed and executed well, hands-on activities can enhance student understanding of key mechanics concepts. Current products are expensive and typically not designed to meet a variety of learning objectives. Through the Mechanics of Inclusion and Inclusivity in Mechanics grant, the Cal Poly Physics and Engineering Departments are seeking to incorporate new hands-on activities into their courses. Our team has designed three inexpensive ”MechaniKits” to be used in physics, statics and dynamics courses [1]. This Final Design Review outlines our findings, objectives, and final designs for this project. It also explains our manufacturing and design verification plans. …


Design Of A 5 Degree Of Freedom Kinematic Stage For The Dual Crystal Backlighter Imager Diagnostic, Nicholas Nguyen Jun 2020

Design Of A 5 Degree Of Freedom Kinematic Stage For The Dual Crystal Backlighter Imager Diagnostic, Nicholas Nguyen

Master's Theses

The National Ignition Facility (NIF) is home to the world’s most energetic laser. The facility is one of the leading centers in inertial confinement fusion (ICF) experiments to research and understand sustainable fusion energy. To fully document and understand the physics occurring during experiments, precise diagnostics are used for a wide range of purposes. One diagnostic, the crystal backlighter imager (CBI), allows for X-ray imaging of the target at late stages of its implosion.

The aim of this project was to increase the current capabilities of the CBI diagnostic with the addition of a second crystal. This thesis focuses on …


A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu Jun 2020

A Study Of The Design Of Adaptive Camber Winglets, Justin J. Rosescu

Master's Theses

A numerical study was conducted to determine the effect of changing the camber of a winglet on the efficiency of a wing in two distinct flight conditions. Camber was altered via a simple plain flap deflection in the winglet, which produced a constant camber change over the winglet span. Hinge points were located at 20%, 50% and 80% of the chord and the trailing edge was deflected between -5° and +5°. Analysis was performed using a combination of three-dimensional vortex lattice method and two-dimensional panel method to obtain aerodynamic forces for the entire wing, based on different winglet camber configurations. …


An Investigation Of Diode Failure, Nicholas James Adams May 2020

An Investigation Of Diode Failure, Nicholas James Adams

Physics

Solar electricity can be used to cheaply cook food and charge electronic devices. We investigate the viability of using diodes as heating elements for insulated solar electric cooking (ISEC). In addition, information on designing and constructing ISEC compatible phone chargers and rechargeable LED lighting systems is included.


Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl Mar 2020

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.