Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

PDF

2000

Institution
Keyword
Publication
Publication Type

Articles 1 - 23 of 23

Full-Text Articles in Physics

Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton Nov 2000

Temperature-Induced Configurational Excitations For Predicting Thermodynamic And Mechanical Properties Of Alloys, Duane D. Johnson, Andrei V. Smirnov, J. B. Staunton, F. J. Pinski, W. A. Shelton

Duane D. Johnson

We show that a structural energy difference, ΔE, must include explicit symmetry-breaking changes of the electronic structure due to temperature-induced configurational excitations, and why ΔE at T=0 K is not necessarily relevant to thermodynamic and mechanical modeling. In Ni3V, we calculate a tenfold decrease of ΔE between D022 and L12 structures from T=0 K to states of order relevant to experiment. ΔE calculated directly from states with short-range order (8 meV) or with low partial order (7–12 meV) agree with high-T experiment (10 meV).


42nd Rocky Mountain Conference On Analytical Chemistry Jul 2000

42nd Rocky Mountain Conference On Analytical Chemistry

Rocky Mountain Conference on Magnetic Resonance

Abstracts from the 42nd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Broomfield, Colorado, July 30 - August 3, 2000.


Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black Jul 2000

Fluid Flow In Micro-Channels: A Stochastic Approach, Hilda Marino Black

Doctoral Dissertations

In this study free molecular flow in a micro-channel was modeled using a stochastic approach, namely the Kolmogorov forward equation in three dimensions. Model equations were discretized using Central Difference and Backward Difference methods and solved using the Jacobi method. Parameters were used that reflect the characteristic geometry of experimental work performed at the Louisiana Tech University Institute for Micromanufacturing.

The solution to the model equations provided the probability density function of the distance traveled by a particle in the micro-channel. From this distribution we obtained the distribution of the residence time of a particle in the micro-channel. Knowledge of …


Spin Fluctuations In Nearly Magnetic Metals From Ab Initio Dynamical Spin Susceptibility Calculations: Application To Pd And Cr95v5, J. B. Staunton, J. Poulter, B. Ginatempo, E. Bruno, Duane D. Johnson Jul 2000

Spin Fluctuations In Nearly Magnetic Metals From Ab Initio Dynamical Spin Susceptibility Calculations: Application To Pd And Cr95v5, J. B. Staunton, J. Poulter, B. Ginatempo, E. Bruno, Duane D. Johnson

Duane D. Johnson

We describe our theoretical formalism and computational scheme for making ab initio calculations of the dynamic paramagnetic spin susceptibilities of metals and alloys at finite temperatures. Its basis is time-dependent density functional theory within an electronic multiple scattering, imaginary time Green function formalism. Results receive a natural interpretation in terms of overdamped oscillator systems making them suitable for incorporation into spin fluctuation theories. For illustration we apply our method to the nearly ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5. We compare and contrast the spin dynamics of these two metals and in each case identify those fluctuations …


Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo Jul 2000

Thermal Lattice Boltzmann Simulation For Multispecies Fluid Equilibration, Linda L. Vahala, Darren Wah, George Vahala, Jonathan Carter, Pavol Pavlo

Electrical & Computer Engineering Faculty Publications

The equilibration rate for multispecies fluids is examined using thermal lattice Boltzmann simulations. Two-dimensional free-decay simulations are performed for effects of velocity shear layer turbulence on sharp temperature profiles. In particular, parameters are so chosen that the lighter species is turbulent while the heavier species is laminar-and so its vorticity layers would simply decay and diffuse in time. With species coupling, however, there is velocity equilibration followed by the final relaxation to one large co- and one large counter-rotating vortex. The temperature equilibration proceeds on a slower time scale and is in good agreement with the theoretical order of magnitude …


Resolution Of Overlapping Spectra By Wavelength Modulation Spectroscopy, Audra Michiele Bullock Jul 2000

Resolution Of Overlapping Spectra By Wavelength Modulation Spectroscopy, Audra Michiele Bullock

Electrical & Computer Engineering Theses & Dissertations

Wavelength modulation absorption spectroscopy is a highly sensitive, non-intrusive technique for probing gaseous species, which employs the well-known principles of modulation spectroscopy in a novel way. With this technique, parameters such as velocity, density, and temperature can be measured with a high degree of precision. The research presented here shows that wavelength modulation is a convenient means of increasing the sensitivity of an absorption spectroscopy measurement because it allows for harmonic detection. The focus of the dissertation is resolution of overlapping spectra by harmonic detection and the advantages gained by performing detection at the higher harmonics, e.g., sixth and eighth. …


Rotation-Invariant Synthetic Discriminant Function Filter For Pattern Recognition, Vahid R. Riasati, Partha P. Banerjee, Mustafa A. G. Abushagur, Kenneth B. Howell May 2000

Rotation-Invariant Synthetic Discriminant Function Filter For Pattern Recognition, Vahid R. Riasati, Partha P. Banerjee, Mustafa A. G. Abushagur, Kenneth B. Howell

Electrical and Computer Engineering Faculty Publications

The ring synthetic discriminant function (RSDF) filter for rotation-invariant response is discussed for pattern recognition. This method uses one half of a slice of the Fourier transform of the object to generate the transfer function of the filter. This is accomplished by rotating the one half of a slice in the Fourier domain through 2π rad about the zero-frequency point of the Fourier plane. This filter has the advantage of always matching at least one half of a slice of the Fourier transform of any rotation of the image. An analytical discussion of the filter construction and correlation results are …


A High Energy X-Ray And Neutron Scattering Study Of Iron Phosphate Glasses Containing Uranium, Mevlüt Karabulut, G. K. Marasinghe, C. S. Ray, Y. S. Badyal, M.-L. Saboungi, S. Shastri, D. Haeffner, George Daniel Waddill, D. E. Day Mar 2000

A High Energy X-Ray And Neutron Scattering Study Of Iron Phosphate Glasses Containing Uranium, Mevlüt Karabulut, G. K. Marasinghe, C. S. Ray, Y. S. Badyal, M.-L. Saboungi, S. Shastri, D. Haeffner, George Daniel Waddill, D. E. Day

Materials Science and Engineering Faculty Research & Creative Works

The atomic structure of iron phosphate glasses containing uranium has been studied by complementary neutron and x-ray scattering techniques. by combining x-ray and neutron structure factors, detailed information about different pair interactions has been obtained. Most of the basic structural features such as coordination numbers and O-O and P-O distances in uranium containing glasses are the same as those in the base glass of batch composition 40Fe2O3-60P2O5 (mol %). However, the Fe-O distances change slightly with the addition of uranium. The observed structural parameters support a structural model in which the waste elements occupy voids in the Fe-O-P network, hence, …


Optical Metrology Of Adaptive Membrane Mirrors, John W. Wagner Mar 2000

Optical Metrology Of Adaptive Membrane Mirrors, John W. Wagner

Theses and Dissertations

Current space-based imaging platforms are significantly constrained in both size and weight by the launch vehicle. Increased payload size and weight results in increased cost and a decrease in launch responsiveness. The USAF Scientific Advisory Board (SAB) identified "Large lightweight structures for optics and antennas" as a revolutionary primary technology to be developed for the Air Force of the 21st Century. A membrane primary mirror in a space-based imaging system has the ability to overcome current payload constraints and meet evolutionary needs of the future. The challenge of membrane optics in space is the process of implementing adaptive optics technology …


Optical Investigation Of Molecular Beam Epitaxy AlXGa1-XN To Determine Material Quality, Judith L. Mcfall Mar 2000

Optical Investigation Of Molecular Beam Epitaxy AlXGa1-XN To Determine Material Quality, Judith L. Mcfall

Theses and Dissertations

The purpose of this research was to determine the quality of AIGaN samples with various mole fractions of aluminum doped with silicon. The samples utilized for this study were composed of an AIN buffer layer sandwiched between the sapphire substrate and AIGaN epilayer grown by molecular beam epitaxy (MBE). Cathodoluminescence (CL) and photoluminescence (PL) were employed to determine the mole fraction of aluminum in each sample. These techniques also gave insight into the material's nonuniformity, defects, and impurities. CL was run at 4 different beam energies (2,5,10, & 15 keV) with four different currents (1,10,50, & 90 µA) for the …


Behavior Of Grain Boundary Resistivity In Metals Predicted By A Two-Dimensional Model, Rand Dannenberg, Alexander H. King Jan 2000

Behavior Of Grain Boundary Resistivity In Metals Predicted By A Two-Dimensional Model, Rand Dannenberg, Alexander H. King

Alexander H. King

The behavior of a model for the specific grain boundary resistivity in metallic bamboo conductor lines is developed and compared to other theoretical treatments, and to experiment. The grain boundary is modeled as an array of scatterers on a plane. The scatterers are called “vacancy-ion” complexes, in which the vacancy represents the boundary free volume, and the ion is an atom adjacent to the vacancy. Three cases are investigated, that of noninterfering scatterers, a continuum of interfering scatterers, and discrete interfering scatterers. The approximations used lead to a specific grain boundary resistivity ∼10−16 Ω m2 for aluminum, in agreement with …


Nonlinear Self-Organization In Photorefractive Materials, Partha P. Banerjee, Nickolai Kukhtarev, John O. Dimmock Jan 2000

Nonlinear Self-Organization In Photorefractive Materials, Partha P. Banerjee, Nickolai Kukhtarev, John O. Dimmock

Electrical and Computer Engineering Faculty Publications

This chapter discusses self-organization and its effects in optics. One of the most exciting and potentially useful areas of current research in optics involves the understanding and exploitation of self-organization in nonlinear optical systems. This self-organization may sometimes lead to the evolution of complex spatial patterns that can be regarded as the nonlinear eigenmodes of the system. Generation of these patterns is characteristically marked by the presence of intensity thresholds. In a nonlinear system with complicated temporal dynamics, it turns out that one cannot retain purity in spatial dimensionality. It is therefore equally important to investigate the dynamics of the …


Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach Jan 2000

Series Operation Of Direct Current Xenon Chloride Excimer Sources, Ahmed El-Habachi, Wenhui Shi, Mohamed Moselhy, Robert H. Stark, Karl H. Schoenbach

Bioelectrics Publications

Stable, direct current microhollow cathode discharges in mixtures of hydrochloric acid, hydrogen, xenon, and neon have been generated in a pressure range of 200–1150 Torr. The cathode hole diameter was 250 μm. Sustaining voltages range from 180 to 250 V at current levels of up to 5 mA. The discharges are strong sources of xenon chloride excimer emission at a wavelength of 308 nm. Internal efficiencies of approximately 3% have been reached at a pressure of 1050 Torr. The spectral radiant power at this pressure was measured as 5 mW/nm at 308 nm for a 3 mA discharge. By using …


Low Damage Processing And Process Characterization, Xianmin Tang Jan 2000

Low Damage Processing And Process Characterization, Xianmin Tang

Dissertations, Theses, and Masters Projects

Two novel plasma sources (one neutral source and one pulsed inductively coupled plasma source) and ashing process characterization were investigated. The primary goal was to characterize these source properties and develop corresponding applications. The study includes process damage assessment with these two sources and another continuous wave (13.56MHz) plasma source. A global average simulation of the pulsed discharges was also included.;The transient plasma density and electron temperature from the double probe analysis were compared with single Langmuir probe results with sheath displacement corrections in pulsed discharges (200Hz--10kHz). The equivalent resistance method can be used effectively to analyze these double probe …


Plasma Source Ion Implantation Of High Voltage Electrodes, Thomas Joseph Venhaus Jan 2000

Plasma Source Ion Implantation Of High Voltage Electrodes, Thomas Joseph Venhaus

Dissertations, Theses, and Masters Projects

Field emission and breakdown characteristics of high voltage, large area electrodes determine the performance of many vacuum-based electron sources. A corroborative project with the Thomas Jefferson National Accelerator Facility involves studying the behavior of such electrodes after nitrogen ion implantation. A Plasma Source Ion Implantation (PSII) facility is designed and constructed at William and Mary, and used to treat stainless steel electrodes. PSII is a novel implantation technique developed at the University of Wisconsin-Madison. A workpiece is submerged in a quiescent plasma of the species to be implanted. A series of high, negative voltages (30--100 kV) is applied to the …


Theoretical And Experimental Study Of Generation Mechanisms For Laser Ultrasound In Woven Graphite /Epoxy Composites With Translaminar Stitching, Adam D. Friedman Jan 2000

Theoretical And Experimental Study Of Generation Mechanisms For Laser Ultrasound In Woven Graphite /Epoxy Composites With Translaminar Stitching, Adam D. Friedman

Dissertations, Theses, and Masters Projects

The aerospace industry is beginning to use advanced composite materials for primary load bearing structures and their failure mechanisms must be better understood to predict their behavior in service. The Combined Loads Tests (COLTS) facility is being constructed at the NASA Langley Research Center to characterize these failure mechanisms. Laser based ultrasonic NDE can monitor the samples during dynamic loading without interfering with the structural tests. However, the constraints of implementing laser ultrasound in a structures laboratory reduces the efficiency of the technique. The system has to be "eye-safe" because many people will be present during the structural tests. Consequently, …


Surface Processing By Rfi Pecvd And Rfi Psii, Lingling Wu Jan 2000

Surface Processing By Rfi Pecvd And Rfi Psii, Lingling Wu

Dissertations, Theses, and Masters Projects

An RFI plasma enhanced chemical vapor deposition (PECVD) system and a large-scale RF plasma source immersion ion implantation (PSII) system were designed and built to study two forms of 3-D surface processing, PECVD and PSII. Using the RFI PECVD system, Ti-6Al-4V substrates were coated with diamond-like carbon films with excellent tribological and optical properties. as an innovation, variable angle spectroscopic ellipsometry (VASE) was successfully applied for non-destructive, 3-D, large-area tribological coatings quality investigation.;Based on the experience with the RFI PECVD system, a large-scale RFICP source was designed and built for the PSIL Langmuir probe and optical emission spectroscopy studies indicated …


Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt Jan 2000

Rotary Honing: A Variant Of The Taylor Paint-Scraper Problem, Christopher Hills, H. Moffatt

Articles

The three-dimensional Row in a corner of fixed angle α induced by the rotation in its plane of one of the boundaries is considered. A local similarity solution valid in a neighbourhood of the centre of rotation is obtained and the streamlines are shown to be closed curves. The effects of inertia are considered and are shown to be significant in a small neighbourhood of the plane of symmetry of the flow. A simple experiment confirms that the streamlines are indeed nearly closed; their projections on planes normal to the line of intersection of the boundaries are precisely the 'Taylor' …


Local Environment Of Iron And Uranium Ions In Vitrified Iron Phosphate Glasses Studied By Fe K And Uliii-Edge X-Ray Absorption Fine Structure Spectroscopy, Mevlüt Karabulut, G. K. Marasinghe, C. S. Ray, D. E. Day, George Daniel Waddill, P. G. Allen, C. H. Booth, J. J. Bucher, D. L. Caulder, D. K. Shuh, M. Grimsditch, M.-L. Saboungi Jan 2000

Local Environment Of Iron And Uranium Ions In Vitrified Iron Phosphate Glasses Studied By Fe K And Uliii-Edge X-Ray Absorption Fine Structure Spectroscopy, Mevlüt Karabulut, G. K. Marasinghe, C. S. Ray, D. E. Day, George Daniel Waddill, P. G. Allen, C. H. Booth, J. J. Bucher, D. L. Caulder, D. K. Shuh, M. Grimsditch, M.-L. Saboungi

Materials Science and Engineering Faculty Research & Creative Works

The local structure of iron and uranium ions in a series of iron phosphate glasses with the general composition (40 - x)Fe2O3-xUO2-60P2O5 and (1-x-y)(40Fe2O3-60P2O5)-xUO2-y(Na2O or CaO) was investigated using Fe K-edge and U LIII-edge x-ray absorption fine structure spectroscopy. Replacing Fe2O3 by UO2 in the glass caused more distortion in the coordination environment of Fe(III) ions. Extended x-ray absorption fine structure fits revealed that the Fe-P bonds observed in the base glass also …


New Free-Space Multistage Optical Interconnection Network And Its Matrix Theory, Fengguang Luo, Mingcui Cao, Anjun Wan, Jun Xu, Xinjun Zhou, Cong Deng Jan 2000

New Free-Space Multistage Optical Interconnection Network And Its Matrix Theory, Fengguang Luo, Mingcui Cao, Anjun Wan, Jun Xu, Xinjun Zhou, Cong Deng

Electro-Optics and Photonics Faculty Publications

A new free-space multistage optical interconnection network which is called the Comega interconnection network is presented. It has the same topological construction for the cascade stages of the Comega interconnection. The concept of the left Comega and the right Comega interconnection networks are given to describe the whole Comega interconnection network. The matrix theory for the Comega interconnection network is presented. The route controlling of the Comega interconnection network is decided based on the matrix analysis. The node switching states in cascade stages of the 8 by 8 Comega interconnection network for the route selection are given. The data communications …


Characterization Of Poly-Si Thin Films Deposited By Magnetron Sputtering Onto Ni Prelayers, Elena A. Guliants, Wayne A. Anderson Jan 2000

Characterization Of Poly-Si Thin Films Deposited By Magnetron Sputtering Onto Ni Prelayers, Elena A. Guliants, Wayne A. Anderson

Electrical and Computer Engineering Faculty Publications

A method of producing a polycrystalline silicon thin film on a foreign substrate without subsequent annealing has been developed. Thermally evaporated 5–100 nm thick Nifilms served as prelayers for magnetron sputtered Si thin films. A continuous film was obtained as a result of metal induced growth of polysilicon during low temperature (below 600 °C) deposition. The film uniformity is promising for large area device applications. The influence of the Ni prelayer thickness on the grain size of thus obtained films was investigated. Atomic force microscopy and cross-sectional scanning electron microscopy studies revealed features in the 150–600 nm size range while …


Quantitative Analysis Of Ultra-Fine Goethite In Rust Layer On Steel Using Mossbauer And X-Ray Diffraction Spectroscopy, Masato Yamashita, Toshihei Misawa, H. E. Townsend, D. C. Cook Jan 2000

Quantitative Analysis Of Ultra-Fine Goethite In Rust Layer On Steel Using Mossbauer And X-Ray Diffraction Spectroscopy, Masato Yamashita, Toshihei Misawa, H. E. Townsend, D. C. Cook

Physics Faculty Publications

We have proposed determination procedure of the relative amounts of rust constituents of steel. Mossbauer spectroscopy provides the relative amounts of crystalline rust constituents including ultra-fine crystals. A quantitative analysis of ultra-fine crystals is possible with the resolution of several percent by comparing the Mossbauer results with the relative amounts of rust constituents determined by X-ray diffraction spectroscopy.


Textured Mos 2 Thin Films Obtained On Tungsten: Electrical Properties Of The W/Mos 2 Contact, E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac Jan 2000

Textured Mos 2 Thin Films Obtained On Tungsten: Electrical Properties Of The W/Mos 2 Contact, E. Gourmelon, J. C. Bernède, J. Pouzet, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Textured films of molybdenum disulfide have been obtained by solid state reaction between the constituents in thin films form when a (200) oriented tungsten sheet is used as substrate. The crystallites have their c axis perpendicular to the plane of the substrate. The annealing conditions are T=1073K and t=30 min. The films are stoichoimetric and p type. Such highly textured films are achieved without foreign atom addition (Ni, Co...). It appears, as shown by x-ray photoelectron spectroscopy, that a thin WS2 layer is present at the interface W/MoS2. The crystallization process is discussed by a …