Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physics

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart Dec 2016

Zirconium Diboride, Hexagonal Boron Nitride, And Amorphous Alumina Thin Films For High Temperature Applications, David Murdock Stewart

Electronic Theses and Dissertations

The use of microelectronic sensors and actuators in harsh, high temperature environments, such as power plants, turbine engines, and industrial manufacturing, could greatly improve the safety, reliability, and energy efficiency of these processes. The primary challenge in implementing this technology is the breakdown and degradation of thin films used in fabricating these devices when exposed to high temperatures >800 °C and oxidizing atmospheres. Zirconium diboride, hexagonal boron nitride, and amorphous alumina are candidate materials for use as thin film sensor components due to their high melting temperatures and stable phases. Zirconium diboride thin films have metallic-like electrical conductivity and remain …


Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook Dec 2016

Microstructural Analysis Of Thermoelastic Response, Nonlinear Creep, And Pervasive Cracking In Heterogeneous Materials, Alden C. Cook

Electronic Theses and Dissertations

This dissertation is concerned with the development of robust numerical solution procedures for the generalized micromechanical analysis of linear and nonlinear constitutive behavior in heterogeneous materials. Although the methods developed are applicable in many engineering, geological, and materials science fields, three main areas are explored in this work. First, a numerical methodology is presented for the thermomechanical analysis of heterogeneous materials with a special focus on real polycrystalline microstructures obtained using electron backscatter diffraction techniques. Asymptotic expansion homogenization and finite element analysis are employed for micromechanical analysis of polycrystalline materials. Effective thermoelastic properties of polycrystalline materials are determined and compared …


Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson May 2016

Synthesis, Characterization, And Electronic Properties Of Novel 2d Materials : Transition Metal Dichalcogenides And Phosphorene., George Anderson

Electronic Theses and Dissertations

Scaling electronic devices has become paramount. The current work builds upon scaling efforts by developing novel synthesis methods and next generation sensing devices based on 2D materials. A new combination method utilizing thermal evaporation and chemical vapor deposition was developed and analyzed to show the possibilities of Transition Metal Dichalcogenide monolayers and heterostructures. The materials produced from the above process showed high degrees of compositional control in both spatial dimensions and chemical structure. Characterization shows controlled fabrication of heterostructures, which may pave the way for future band gap engineering possibilities. In addition, Phosphorene based field effect transistors, photodetectors, and gas …


Electrical Parasitic Bandwidth Limitations Of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers, Xu Yang Jan 2016

Electrical Parasitic Bandwidth Limitations Of Oxide-Free Lithographic Vertical-Cavity Surface-Emitting Lasers, Xu Yang

Electronic Theses and Dissertations

Nowadays, Vertical-Cavity Surface-Emitting Lasers (VCSELs) are the most popular optical sources in short-reach data communications. In the commercial oxide VCSEL technology, an oxide aperture is created inside resonant cavity in realizing good mode and current confinement, however, high electrical resistance comes along with forming the oxide aperture and the electrical parasitic bandwidth becomes the main limitation in modulation speed. In this report, electrical bandwidths of oxide-free lithographic VCSELs have been studied along with their general lasing properties. Due to the new ways of fabricating the aperture, record low resistances have been achieved in oxide-free lithographic VCSELs with various sizes, while …


Broad Bandwidth Optical Frequency Combs From Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers, Anthony Klee Jan 2016

Broad Bandwidth Optical Frequency Combs From Low Noise, High Repetition Rate Semiconductor Mode-Locked Lasers, Anthony Klee

Electronic Theses and Dissertations

Mode-locked lasers have numerous applications in the areas of communications, spectroscopy, and frequency metrology. Harmonically mode-locked semiconductor lasers with external ring cavities offer a unique combination of benefits in that they can produce high repetition rate pulse trains with low timing jitter, achieve narrow axial mode linewidths, have the potential for entire monolithic integration on-chip, feature high wall-plug efficiency due to direct electrical pumping, and can be engineered to operate in different wavelength bands of interest. However, lasers based on InP/InGaAsP quantum well devices which operate in the important telecom C-band have thus far been relatively limited in bandwidth as …


Multi-Purpose Device For Analyzing And Measuring Ultra-Short Pulses, Naman Anilkumar Mehta Jan 2016

Multi-Purpose Device For Analyzing And Measuring Ultra-Short Pulses, Naman Anilkumar Mehta

Electronic Theses and Dissertations

Intensity auto correlator is device to measure pulse widths of ultrashort pulses on the order of picoseconds and femtoseconds. I have built an in-house, compact, portable, industry standard intensity auto correlator for measuring ultrashort pulse-widths. My device is suitable for pulse-widths from 500 ps to 50 fs. The impetus for developing this instrument stemmed from our development of a multicore-fiber laser for high power laser applications, which also produces very short pulses that cannot be measured with an oscilloscope. As techniques for measuring short pulse-widths have been well studied, what made my journey exciting was the process of taking an …


Advanced Blue Phase Liquid Crystal Displays, Daming Xu Jan 2016

Advanced Blue Phase Liquid Crystal Displays, Daming Xu

Electronic Theses and Dissertations

Thin-film transistor (TFT) liquid crystal displays (LCDs) have become indispensable in our daily lives. Their widespread applications range from smartphones, laptops, TVs to navigational devices, data projectors and wearable displays. Over past decades, massive efforts have been invested in device development, material characterization and manufacturing technology. As a result, the performance of LCDs, such as viewing angle, contrast ratio, color gamut and resolution, have been improved significantly. Nonetheless, there are still urgent needs for fast response time and low power consumption. Fast response time helps reduce motion image blurs and enable color sequential displays. The latter is particularly attractive since …


Sensing Using Specialty Optical Fibers, Amy Van Newkirk Jan 2016

Sensing Using Specialty Optical Fibers, Amy Van Newkirk

Electronic Theses and Dissertations

Fiber optic based sensing is a growing field with many applications in civil and aerospace engineering, oil and gas industries, and particularly in harsh environments where electronics are not able to function. Optical fibers can be easily integrated into structures, are immune to electromagnetic interference, can be interrogated from remote distances, and can be multiplexed for distributed measurements. Because of these properties, specialty fiber designs and devices are being explored for sensing temperature, strain, pressure, curvature, refractive index, and more. Here we show a detailed analysis of a multicore fiber (MCF) for sensing, including its design and optimization in simulation, …


Intrinsic Modulation Response Modeling And Analysis For Lithographic Vertical-Cavity Surface-Emitting Lasers, Mingxin Li Jan 2016

Intrinsic Modulation Response Modeling And Analysis For Lithographic Vertical-Cavity Surface-Emitting Lasers, Mingxin Li

Electronic Theses and Dissertations

Vertical-cavity surface-emitting lasers (VCSELs) have been greatly improved and successfully commercialized over the past few decades owing to their ability to provide both mode and current confinement that enables low energy consumption, high efficiency and high modulation speed. However, further improvement of oxide VCSELs is limited by the nature of the oxide aperture because of self-heating, internal strain and difficulties in precise size control. In this dissertation, VCSELs using lithographic approach are demonstrated to overcome the limitations of oxide VCSELs, in which an intra-cavity phase shifting mesa is applied to define the device size and provide optical mode and electrical …