Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 37

Full-Text Articles in Physics

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti Nov 2023

Dynamics And Scaling Of Particle Streaks In High-Reynolds-Number Turbulent Boundary Layers, Tim Berk, Filippo Coletti

Mechanical and Aerospace Engineering Faculty Publications

Inertial particles in wall-bounded turbulence are known to form streaks, but experimental evidence and predictive understanding of this phenomenon is lacking, especially in regimes relevant to atmospheric flows. We carry out wind tunnel measurements to investigate this process, characterizing the transport of microscopic particles suspended in turbulent boundary layers. The friction Reynolds number Re𝜏 = O(104) allows for significant scale separation and the emergence of large-scale motions, while the range of viscous Stokes number St+ = 18–870 is relevant to the transport of dust and fine sand in the atmospheric surface layer. We …


Utah's Food Processing Industry Can Manufacture Products From Cbd-Containing Lipids That Have Superior Texture And Consistency, Joseph Cooney, Isaac Hilton Feb 2022

Utah's Food Processing Industry Can Manufacture Products From Cbd-Containing Lipids That Have Superior Texture And Consistency, Joseph Cooney, Isaac Hilton

Research on Capitol Hill

Sophomore Joseph is an Honors student and Undergraduate Research Fellow studying physics. Freshman Isaac, of Kaysville, studies civil and environmental engineering. Joseph and Isaac are exploring how cannabinoids impact the way that lipids function. A common way CBD is packaged is within foods, where it is frequently added to fats like cocoa butter or palm oil, and as the market for such products increase producers need to understand CBD will change the behavior of the fats they are using.In addition to this work, Joseph also volunteers for a physics lab. “Undergraduate research has let me explore fields outside my major …


The Surface Conditions Of Spacecraft Panels May Significantly Affect Spacecraft Survivability, Trace Taylor Feb 2022

The Surface Conditions Of Spacecraft Panels May Significantly Affect Spacecraft Survivability, Trace Taylor

Research on Capitol Hill

USU junior Trace grew up in Brigham City and studies physics and electrical engineering. The majority of spacecraft failure is caused by electron charging on the outer surfaces of the craft. Additionally, contaminants on the craft can cause a film over surface panels, increasing the problem. Trace is studying how roughness on panels can mitigate this contamination as it affects the charging that can lead to craft failure. This research will help determine what optimal panel materials should be used in future spacecraft construction. Trace started research almost as soon as he came to campus in his freshman year, and …


Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison Aug 2019

Secondary Electron Yield Measurements Of Carbon Nanotube Forests: Dependence On Morphology And Substrate, Brian Wood, Jordan Lee, Gregory Wilson, T. -C. Shen, Jr Dennison

Journal Articles

Total, secondary, and backscatter electron yield data were taken with beam energies between 15 eV and 30 keV, in conjunction with energy emission data, to determine the extent of suppression of yield caused by carbon nanotube (CNT) forest coatings on substrates. CNT forests can potentially lower substrate yield due to both its inherently low-yield, low-atomic number (Z) carbon composition, and its bundled, high-aspect ratio structure. Rough surfaces, and in particular, surfaces with deep high-aspect-ratio voids, can suppress yields, as the electrons emitted from lower lying surfaces are recaptured by surface protrusions rather than escaping the near-surface region. Yields of multilayered …


Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison Aug 2019

Wireless Antenna Detection Of Electrostatic Discharge Events, Allen Andersen, Jr Dennison

Journal Articles

Wireless intraspacecraft communication technology is being developed for signal transfer on space missions to save weight and simplify the design. One consideration for this new technology is its interaction with space environmentinduced electrostatic discharges (ESDs). The short time scales of spacecraft ESD events result in broad frequency band signals that can interact with high-frequency wireless antennas. These interactions present a source of signal noise. However, they also present a possibility of in-flight wireless ESD monitoring. We present laboratory measurements of arcing on common spacecraft insulators using commercially available single-band 2.4-GHz and dual-band 2.4-/5.8-GHz Wi-Fi antennas. These wireless detections are shown …


Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott Oct 2018

Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P0030


Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan Jul 2018

Chaotic Phase-Coded Waveforms With Space-Time Complementary Coding For Mimo Radar Applications, Sheng Hong, Fuhui Zhou, Yantao Dong, Zhixin Zhao, Yuhao Wang, Maosong Yan

Electrical and Computer Engineering Faculty Publications

A framework for designing orthogonal chaotic phase-coded waveforms with space-time complementary coding (STCC) is proposed for multiple-input multiple-output (MIMO) radar applications. The phase-coded waveform set to be transmitted is generated with an arbitrary family size and an arbitrary code length by using chaotic sequences. Due to the properties of chaos, this chaotic waveform set has many advantages in performance, such as anti-interference and low probability of intercept. However, it cannot be directly exploited due to the high range sidelobes, mutual interferences, and Doppler intolerance. In order to widely implement it in practice, we optimize the chaotic phase-coded waveform set from …


An Enhanced Operational Definition Of Dielectric Breakdown For Dc Voltage Step-Up Tests, Allen Andersen, Jr Dennison Oct 2017

An Enhanced Operational Definition Of Dielectric Breakdown For Dc Voltage Step-Up Tests, Allen Andersen, Jr Dennison

Journal Articles

The imprecise definition of breakdown in the ASTM D3755-14 standard can misidentify breakdown. If the recommended test circuit current sensing element threshold is set too high, breakdown may occur undetected. Conversely, false positives may result from designating a low current threshold. An operational definition of breakdown much less sensitive to these pitfalls is outlined herein. This enhanced definition of breakdown is based on the average rate of change of the leakage current with increasing voltage, rather than a simple current threshold, avoiding ambiguous association with anomalies in current traces. For tests that continuously monitor leakage current, breakdown can be detected …


Astro Camp Presentation, Get Away Special Team 2011 Jul 2011

Astro Camp Presentation, Get Away Special Team 2011

Education and Outreach

No abstract provided.


Surface Geometry And Heat Flux Effect On Thin Wire Nucleate Pool Boiling Of Subcooled Water In Mictrogravity, Troy Munro, Heng Ban Apr 2011

Surface Geometry And Heat Flux Effect On Thin Wire Nucleate Pool Boiling Of Subcooled Water In Mictrogravity, Troy Munro, Heng Ban

Presentations

No abstract provided.


Effects Of Heat Flux On Nucleate Boiling In Microgravity, Andrew Fassman Feb 2011

Effects Of Heat Flux On Nucleate Boiling In Microgravity, Andrew Fassman

Presentations

No abstract provided.


The Design And Construction Of A Microgravity Boiling Experiment, Troy Munro Feb 2011

The Design And Construction Of A Microgravity Boiling Experiment, Troy Munro

Presentations

No abstract provided.


Get Away Special: Microgravity Research Team, Getaway Special Team Jan 2011

Get Away Special: Microgravity Research Team, Getaway Special Team

Education and Outreach

No abstract provided.


Report For 2011 Urco Funded Experiment: Development Of Optimal Bubble-Seeding Microheaters To Study Nucleate Boiling Heat Transfer In Microgravity, Ryan Martineau Jan 2011

Report For 2011 Urco Funded Experiment: Development Of Optimal Bubble-Seeding Microheaters To Study Nucleate Boiling Heat Transfer In Microgravity, Ryan Martineau

Reports and Proposals

No abstract provided.


Observations On Braided Thin Wire Nucleate Boiling In Microgravity, Justin P. Koeln, Jeffrey C. Boulware, Heng Ban, Jr Dennison Jan 2011

Observations On Braided Thin Wire Nucleate Boiling In Microgravity, Justin P. Koeln, Jeffrey C. Boulware, Heng Ban, Jr Dennison

Publications

A microgravity experiment was conducted on the Space Shuttle Endeavor (STS-108) to observe sustained nucleate boiling of water. Subcooled water was boiled with a single strand and a braid of three 0.16. mm diameter and 80. mm long Nichrome resistive wires. A CCD video camera recorded the experiment while six thermistors recorded the temperature of the fluid at various distances from the heating element. This paper reports experimental results in observations, measurements, and data analysis. Bubble explosions were found to take place shortly after the onset of boiling for both the single and braid of wires. The explosion may produce …


Development Of Optimal Bubble-Seeding Microheaters To Study Nucleate Boiling Heat Transfer In Microgravity, Ryan Martineau Jan 2011

Development Of Optimal Bubble-Seeding Microheaters To Study Nucleate Boiling Heat Transfer In Microgravity, Ryan Martineau

Reports and Proposals

No abstract provided.


Earth Systems Lesson Plan: Size And Forces Of The Solar System, Getaway Special Team 2010 Sep 2010

Earth Systems Lesson Plan: Size And Forces Of The Solar System, Getaway Special Team 2010

Education and Outreach

No abstract provided.


Elementary And Middle School Science Lesson Plan: Solid, Liquid, Gas, What Is It?, Getaway Special Team 2010 Sep 2010

Elementary And Middle School Science Lesson Plan: Solid, Liquid, Gas, What Is It?, Getaway Special Team 2010

Education and Outreach

No abstract provided.


Physics Lesson Plan: How Far And Fast Does It Travel?, Getaway Special Team 2010 Sep 2010

Physics Lesson Plan: How Far And Fast Does It Travel?, Getaway Special Team 2010

Education and Outreach

No abstract provided.


Follow Up Nucleate Boiling On-Flight Experiment, Andrew Fassmann Mar 2010

Follow Up Nucleate Boiling On-Flight Experiment, Andrew Fassmann

Presentations

No abstract provided.


Gravitational Effects On Thin-Wire Subcooled Nucleate Boiling Dynamics, Justin Koeln, Andrew Fassmann, Troy Munro, Rob Barnett Jan 2010

Gravitational Effects On Thin-Wire Subcooled Nucleate Boiling Dynamics, Justin Koeln, Andrew Fassmann, Troy Munro, Rob Barnett

Presentations

No abstract provided.


Gravitational Effects On Thin-Wire Subcooled Nucleate Boiling Dynamics, Justin Koeln, Andrew Fassmann, Troy Munro, Rob Barnett Jan 2010

Gravitational Effects On Thin-Wire Subcooled Nucleate Boiling Dynamics, Justin Koeln, Andrew Fassmann, Troy Munro, Rob Barnett

Education and Outreach

No abstract provided.


The Gas Team And Nasa (Aka Boil, Boil, Toil And Trouble), Get Away Special Team 2010 Jan 2010

The Gas Team And Nasa (Aka Boil, Boil, Toil And Trouble), Get Away Special Team 2010

Education and Outreach

No abstract provided.


Funboe (Follow-Up Nucleate Boiling On-Flight Experiment), Getaway Special Team 2010 Jan 2010

Funboe (Follow-Up Nucleate Boiling On-Flight Experiment), Getaway Special Team 2010

Education and Outreach

No abstract provided.


Spacecraft Coating-Induced Charging: A Materials And Modeling Study Of Environmental Extreme, Michelle M. Donegan, Jennifer L. Sample, John R. Dennison, R. Hoffman Jan 2010

Spacecraft Coating-Induced Charging: A Materials And Modeling Study Of Environmental Extreme, Michelle M. Donegan, Jennifer L. Sample, John R. Dennison, R. Hoffman

All Physics Faculty Publications

As mankind reaches to explore extreme environments in space, the application of ceramics surface coatings is increasing. The 2005 mission concept for Solar Probe used a unique design to achieve the necessary thermal control for a very close approach to the solar corona, including the use of a highly refractory, electrically insulating ceramic coating over a carbon-carbon composite heat shield. The proposed trajectory takes the spacecraft from a Jovian fly-by to within 4 solar radii of the Sun, spanning 5 orders of magnitude in solar radiation and solar wind plasma density as well as spacecraft temperatures from <100 K to >2000 K. Using …


Project: F.U.N.B.O.E. (Follow-Up Nucleate Boiling On-Flight Experiment), Getaway Special Team 2009 Oct 2009

Project: F.U.N.B.O.E. (Follow-Up Nucleate Boiling On-Flight Experiment), Getaway Special Team 2009

Education and Outreach

No abstract provided.


Sixth Grade Lesson Plan: Heat Moves, Getaway Special Team 2009 Oct 2009

Sixth Grade Lesson Plan: Heat Moves, Getaway Special Team 2009

Education and Outreach

No abstract provided.


Third Grade Lesson Plan: Where Does Heat Come From?, Getaway Special Team 2009 Oct 2009

Third Grade Lesson Plan: Where Does Heat Come From?, Getaway Special Team 2009

Education and Outreach

No abstract provided.


Fifth Grade Lesson Plan: Solid, Liquid, And Gas, Getaway Special Team 2009 Oct 2009

Fifth Grade Lesson Plan: Solid, Liquid, And Gas, Getaway Special Team 2009

Education and Outreach

No abstract provided.


Microgravity Experiments For The Iss, Justin Koeln, Jan Sojka Mar 2009

Microgravity Experiments For The Iss, Justin Koeln, Jan Sojka

Posters

The Get Away Special (GAS) team is a microgravity research team known for leading Utah State University to the impressive distinction of flying more experiments in space than any other university in the world. The following experiments were designed by the GAS team after receiving the opportunity to develop and experiment to be performed by a Space Flight Participant aboard the International Space Station (ISS).