Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Series

2022

Institution
Keyword
Publication
File Type

Articles 1 - 30 of 57

Full-Text Articles in Physics

Fourier Acceleration In The Linear Sigma Model, Cameron Cianci Dec 2022

Fourier Acceleration In The Linear Sigma Model, Cameron Cianci

Honors Scholar Theses

The linear sigma model is a low energy effective model of Quantum Chromodynamics. This model mimics the breaking of chiral symmetry both spontaneously and explicitly through the quark condensate and pion mass matrix respectively. Fourier acceleration is a method that can be implemented in the Hybrid Monte-Carlo algorithm which decreases autocorrelations due to critical slowing down through tuning the mass parameters in the HMC algorithm. Fourier acceleration is applied to the linear sigma model with a novel mass estimation procedure, by assuming the modes behave approximately like simple harmonic oscillators. The masses are chosen by sampling the expectation values of …


A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill Sep 2022

A Mode-Sum Prescription For The Renormalized Stress Energy Tensor On Black Hole Spacetimes, Peter Taylor, Cormac Breen, Adrian Ottewill

Articles

In this paper, we describe an extremely efficient method for computing the renormalized stress-energy tensor of a quantum scalar field in spherically symmetric black hole spacetimes. The method applies to a scalar field with arbitrary field parameters. We demonstrate the utility of the method by computing the renormalized stress-energy tensor for a scalar field in the Schwarzschild black hole spacetime, applying our results to discuss the null energy condition and the semiclassical backreaction.


Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration Sep 2022

Search For A W' Boson Decaying To A Vector-Like Quark And A Top Or Bottom Quark In The All-Jets Final State At √S = 13 Tev, The Cms Collaboration

Department of Physics and Astronomy: Faculty Publications

A search is presented for a heavy W0 boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using protonproton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb−1 at a center-of-mass energy of 13TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are …


Qcd Corrections In Tqγ Production At Hadron Colliders, Nikolaos Kidonakis, Nodoka Yamanaka Aug 2022

Qcd Corrections In Tqγ Production At Hadron Colliders, Nikolaos Kidonakis, Nodoka Yamanaka

Faculty and Research Publications

We study QCD corrections for the associated production of a single top quark and a photon (tqγ production) at hadron colliders. We calculate the NLO cross section at LHC and future collider energies for a variety of kinematical cuts, and we estimate uncertainties from scale dependence and from parton distributions. We also calculate differential distributions in top-quark transverse-momentum and rapidity as well as photon energy. Finally, we study higher-order corrections from soft-gluon emission for this process, and we provide approximate NNLO (aNNLO) results for the cross section and top-quark differential distributions. We also compare our calculations with recent measurements from …


Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng Aug 2022

Fermion-Induced Electroweak Symmetry Non-Restoration Via Temperature-Dependent Masses, Yu Hang Ng

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

Standard Model (SM) and many extensions of SM predict that the electroweak (EW) symmetry was restored in the early universe when the temperature was around 160 GeV. However, recent studies showed that the interactions between some new scalars and SU(2)_L Higgs doublet(s) can cause the EW symmetry to remain broken at temperatures well above the EW scale in certain renormalizable extensions of SM. In this study, we found that new fermions from renormalizable models can also induce this EW symmetry non-restoration effect, provided that they have the appropriate temperature-dependent masses. These masses can arise naturally from the interactions between the …


What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre Jun 2022

What Is A Photon? Foundations Of Quantum Field Theory, Charles G. Torre

All Physics Faculty Publications

This is a brief, informal, and relatively low-level course on the foundations of quantum field theory. The prerequisites are undergraduate courses in quantum mechanics and electromagnetism.


Using Z Boson Events To Study Parton-Medium Interactions In Pb-Pb Collisions, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan Mar 2022

Using Z Boson Events To Study Parton-Medium Interactions In Pb-Pb Collisions, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan

Physics and Engineering Faculty Publications

The spectra measurements of charged hadrons produced in the shower of a parton originating in the same hard scattering with a leptonically decaying Z boson are reported in lead-lead nuclei (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV. Both Pb-Pb and pp data sets are recorded by the CMS experiment at the LHC and correspond to an integrated luminosity of 1.7 nb-1 and 320 pb-1, respectively. Hadronic collision data with one reconstructed Z boson candidate with the transverse momentum pT>30 GeV/c are analyzed. The Z boson constrains the initial energy and direction of the …


Search For Wγ Resonances In Proton-Proton Collisions At S=13 Tev Using Hadronic Decays Of Lorentz-Boosted W Bosons, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Search For Wγ Resonances In Proton-Proton Collisions At S=13 Tev Using Hadronic Decays Of Lorentz-Boosted W Bosons, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

A search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background …


Erratum: Search For Heavy Higgs Bosons Decaying To A Top Quark Pair In Proton-Proton Collisions At S = 13 Tev (Journal Of High Energy Physics, (2020), 2020, 4, (171), 10.1007/Jhep04(2020)171), The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan Mar 2022

Erratum: Search For Heavy Higgs Bosons Decaying To A Top Quark Pair In Proton-Proton Collisions At S = 13 Tev (Journal Of High Energy Physics, (2020), 2020, 4, (171), 10.1007/Jhep04(2020)171), The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan

Physics and Engineering Faculty Publications

In figure 7 of the original publication, the label of the y axis should have been (Formula presented.)”. The corrected version is shown in figure 1. Accordingly, the text pointing to the figure should read “figure 7 shows scans of (Formula presented.) for this hypothesis, as a function of the coupling modifier gAtt-”.


Measurement Of W±Γ Differential Cross Sections In Proton-Proton Collisions At S =13 Tev And Effective Field Theory Constraints, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Measurement Of W±Γ Differential Cross Sections In Proton-Proton Collisions At S =13 Tev And Effective Field Theory Constraints, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

Differential cross section measurements of W±γ production in proton-proton collisions at s=13 TeV are presented. The data set used in this study was collected with the CMS detector at the CERN LHC in 2016-2018 with an integrated luminosity of 138 fb-1. Candidate events containing an electron or muon, a photon, and missing transverse momentum are selected. The measurements are compared with standard model predictions computed at next-to-leading and next-to-next-to-leading orders in perturbative quantum chromodynamics. Constraints on the presence of TeV-scale new physics affecting the WWγ vertex are determined within an effective field theory framework, focusing on the O3W operator. A …


Study Of Dijet Events With Large Rapidity Separation In Proton-Proton Collisions At √S = 2.76 Tev, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan Mar 2022

Study Of Dijet Events With Large Rapidity Separation In Proton-Proton Collisions At √S = 2.76 Tev, The Cms Collaboration, A. Tumasyan, W. Adam, J. W. Andrejkovic, T. Bergauer, S. Chatterjee, Julie M. Hogan

Physics and Engineering Faculty Publications

The cross sections for inclusive and Mueller-Navelet dijet production are measured as a function of the rapidity separation between the jets in proton-proton collisions at s = 2.76 TeV for jets with transverse momentum pT> 35 GeV and rapidity |y| < 4.7. Various dijet production cross section ratios are also measured. A veto on additional jets with pT> 20 GeV is introduced to improve the sensitivity to the effects of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) evolution. The measurement is compared with the predictions of various Monte Carlo models based on leading-order and next-to-leading-order calculations including the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi leading-logarithm (LL) parton shower as well as the LL BFKL resummation. [Figure not available: see fulltext.]


Isolated Objects And Their Evolution: A Derivation Of The Propagator’S Path Integral For Spinless Elementary Particles, Domenico Napoletani, Daniele Carlo Struppa Jan 2022

Isolated Objects And Their Evolution: A Derivation Of The Propagator’S Path Integral For Spinless Elementary Particles, Domenico Napoletani, Daniele Carlo Struppa

Mathematics, Physics, and Computer Science Faculty Articles and Research

We formalize the notion of isolated objects (units), and we build a consistent theory to describe their evolution and interaction. We further introduce a notion of indistinguishability of distinct spacetime paths of a unit, for which the evolution of the state variables of the unit is the same, and a generalization of the equivalence principle based on indistinguishability. Under a time reversal condition on the whole set of indistinguishable paths of a unit, we show that the quantization of motion of spinless elementary particles in a general potential field can be derived in this framework, in the limiting …


A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre Jan 2022

A New Non-Inheriting Homogeneous Solution Of The Einstein-Maxwell Equations With Cosmological Term, Charles G. Torre

Research Vignettes

No abstract provided.


Measuring Recoiling Nucleons From The Nucleus With The Future Electron Ion Collider, Florian Hauenstein, A. Jentsch, J. R. Pybus, A. Kiral, M. D. Baker, Y. Furletova, O. Hen, D. W. Higinbotham, Charles Hyde, V. Morozov, D. Romanov, Lawrence B. Weinstein Jan 2022

Measuring Recoiling Nucleons From The Nucleus With The Future Electron Ion Collider, Florian Hauenstein, A. Jentsch, J. R. Pybus, A. Kiral, M. D. Baker, Y. Furletova, O. Hen, D. W. Higinbotham, Charles Hyde, V. Morozov, D. Romanov, Lawrence B. Weinstein

Physics Faculty Publications

Short range correlated nucleon-nucleon (NN) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner (“spectator-nucleon tagging”). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the laboratory frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasielastic scattering for two electron and ion beam energy configurations: 5 GeV e− and 41 …


Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco Jan 2022

Machine Learning-Based Event Generator For Electron-Proton Scattering, Y. Alanazi, P. Ambrozewicz, M. Battaglieri, A.N. Hiller Blin, M. P. Kuchera, Y. Li, T. Liu, R. E. Mcclellan, W. Melnitchouk, E. Pritchard, M. Robertson, N. Sato, R. Strauss, L. Velasco

Computer Science Faculty Publications

We present a new machine learning-based Monte Carlo event generator using generative adversarial networks (GANs) that can be trained with calibrated detector simulations to construct a vertex-level event generator free of theoretical assumptions about femtometer scale physics. Our framework includes a GAN-based detector folding as a fast-surrogate model that mimics detector simulators. The framework is tested and validated on simulated inclusive deep-inelastic scattering data along with existing parametrizations for detector simulation, with uncertainty quantification based on a statistical bootstrapping technique. Our results provide for the first time a realistic proof of concept to mitigate theory bias in inferring vertex-level event …


The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


Reply To "Comment On 'Quasielastic Lepton Scattering And B=Back-To-Back Nucleons In The Short-Time Approximation' ", S. Pastore, J. Carlson, Rocco Schiavilla, J. L. Barrow, S. Gandolfi, R. B. Wiringa Jan 2022

Reply To "Comment On 'Quasielastic Lepton Scattering And B=Back-To-Back Nucleons In The Short-Time Approximation' ", S. Pastore, J. Carlson, Rocco Schiavilla, J. L. Barrow, S. Gandolfi, R. B. Wiringa

Physics Faculty Publications

We briefly review the concept of scaling and how it occurs in quasielastic electron and neutrino scattering from nuclei, and then the particular approach to scaling in the short-time approximation. We show that, whereas two-nucleon currents do significantly enhance the transverse electromagnetic response, they do not spoil scaling, but, in fact, enhance it. We provide scaling results obtained in the short-time approximation that verify this claim. The enhanced scaling, although obtained empirically, is not “accidental”—as claimed in [O. Benhar, Phys. Rev. C 105, 049801 (2022)]—but rather reflects quasielastic kinematics and the dominant role played by pion-exchange interactions and currents …


Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao Jan 2022

Inverse Moment Of The B Meson Quasidistribution Amplitude, Ji Xu, Xi-Ruo Zhang, Shuai Zhao

Physics Faculty Publications

We perform a study on the structure of the inverse moment (IM) of quasidistributions, by taking B-meson quasidistribution amplitude (quasi-DA) as an example. Based on a one-loop calculation, we derive the renormalization group equation and velocity evolution equation for the first IM of quasi-DA. We find that, in the large velocity limit, the first IM of B-meson quasi-DA can be factorized into IM as well as logarithmic moments of light-cone distribution amplitude (LCDA), accompanied by short distance coefficients. Our results can be useful either in understanding the patterns of perturbative matching in large momentum effective theory or evaluating inverse …


Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou Jan 2022

Perturbative Unitarity And Nec Violation In Genesis Cosmology, Yong Cai, Ji Xu, Shuai Zhao, Siyi Zhou

Physics Faculty Publications

Explorations of the violation of null energy condition (NEC) in cosmology could enrich our understanding of the very early universe and the related gravity theories. Although a fully stable NEC violation can be realized in the “beyond Horndeski” theory, it remains an open question whether a violation of the NEC is allowed by some fundamental properties of UV-complete theories or the consistency requirements of effective field theory (EFT). We investigate the tree-level perturbative unitarity for stable NEC violations in the contexts of both Galileon and “beyond Horndeski” genesis cosmology, in which the universe is asymptotically Minkowskian in the past. We …


Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos Jan 2022

Toward The Determination Of The Gluon Helicity Distribution In The Nucleon From Lattice Quantum Chromodynamics, Colin Egerer, Bálint Joó, Joseph Karpie, Nikhil Karthik, Tanjib Khan, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present the first exploratory lattice quantum chromodynamics (QCD) calculation of the polarized gluon Ioffe-time pseudodistribution in the nucleon. The Ioffe-time pseudodistribution provides a frame-independent and gauge-invariant framework to determine the gluon helicity in the nucleon from first principles. We employ a high-statistics computation using a 323 × 64 lattice ensemble characterized by a 358 MeV pion mass and a 0.094 fm lattice spacing. We establish the pseudodistribution approach as a feasible method to address the proton spin puzzle with successive improvements in statistical and systematic uncertainties anticipated in the future. Within the statistical precision of our data, we …


Experimental Study Of The Behavior Of The Bjorken Sum At Very Low Q², A. Deur, J. P. Chen, S. E. Kuhn, C. Peng, M. Ripani, V. Sulkosky, K. Adhikari, M. Battaglieri, V. D. Burkert, G. D. Cates, R. De Vita, G.E. Dodge, L. El Fassi, F. Garibaldi, H. Kang, M. Osipenko, J. T. Singh, K. Slifer, J. Zhang, X. Zheng Jan 2022

Experimental Study Of The Behavior Of The Bjorken Sum At Very Low Q², A. Deur, J. P. Chen, S. E. Kuhn, C. Peng, M. Ripani, V. Sulkosky, K. Adhikari, M. Battaglieri, V. D. Burkert, G. D. Cates, R. De Vita, G.E. Dodge, L. El Fassi, F. Garibaldi, H. Kang, M. Osipenko, J. T. Singh, K. Slifer, J. Zhang, X. Zheng

Physics Faculty Publications

We present new data on the Bjorken sum -Γ p-n1 (Q2) at 4-momentum transfer 0.021 ≤ Q2 ≤ 0.496 GeV2. The data were obtained in two experiments performed at Jefferson Lab: EG4 on polarized protons and deuterons, and E97110 on polarized 3He from which neutron data were extracted. The data cover the domain where chiral effective field theory (χEFT), the leading effective theory of the Strong Force at large distances, is expected to be applicable. We find that our data and the predictions from χEFT are only in marginal …


Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu Jan 2022

Measurement Of Spin Density Matrix Elements In Λ(1520) Photoproduction At 8.2-8.8 Gev, Shankar Adhikari, C. S. Akondi, M. Albrecht, Moskov Amaryan, Tyler Viducic, B. Zihlmann, Et Al., Gluex Collaboration, D. I. Glazier, V. Mathieu

Physics Faculty Publications

We report on the measurement of spin density matrix elements of the Λ(1520) in the photoproduction reaction γp→Λ(1520)K+, via its subsequent decay to Kp. The measurement was performed as part of the GlueX experimental program in Hall D at Jefferson Laboratory using a linearly polarized photon beam with Eγ = 8.2 GeV–8.8 GeV. These are the first such measurements in this photon energy range. Results are presented in bins of momentum transfer squared, − (t − t0). We compare the results with a Reggeon exchange model and determine that natural exchange amplitudes are …


Polarized Gluon Pseudodistributions At Short Distances, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2022

Polarized Gluon Pseudodistributions At Short Distances, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We formulate the basic points of the pseudo-PDF approach to the lattice calculation of polarized gluon PDFs. We present the results of our calculations of the one-loop corrections for the bilocal Gμα(z)G̃λβ(0) correlator of gluonic fields. Expressions are given for a general situation when all four indices are arbitrary, and also for specific combinations of indices corresponding to three matrix elements that contain the twist-2 invariant amplitude related to the polarized PDF. We study the evolution properties of these matrix elements, and derive matching relations between Euclidean and light-cone Ioffe-time distributions. These relations are necessary for …


Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2022

Short-Distance Structure Of Unpolarized Gluon Pseudodistributions, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We present the results that form the basis for calculations of the unpolarized gluon parton distributions (PDFs) using the pseudo-PDF approach. We give the results for the most complicated box diagram both for gluon bilocal operators with arbitrary indices and for combinations of indices corresponding to three matrix elements that are most convenient to extract the twist-2 invariant amplitude. We also present detailed results for the gluon-quark transition diagram. The additional results for the box diagram and the gluon-quark contribution may be used for extractions of the gluon PDF from different matrix elements, with a possible cross-check of the results …


Parton Distribution Function For Topological Charge At One Loop, Anatoly Radyushkin, Shuai Zhao Jan 2022

Parton Distribution Function For Topological Charge At One Loop, Anatoly Radyushkin, Shuai Zhao

Physics Faculty Publications

We present results for the gg-part of the one-loop corrections to the recently introduced “topological charge” GPD ~F(x, q2). In particular, we give expression for its evolution kernel. To enforce strict compliance with the gauge invariance requirements, we have used on-shell states for external gluons, and have obtained identical results both in Feynman and light-cone gauges. No “zero mode” δ(x) terms were found for the twist-4 gluon GPD ~F(x, q2).


Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich Jan 2022

Nonlinear Meissner Effect In Nb3Sn Coplanar Resonators, Junki Makita, C. Sundahl, Gianluigi Ciovati, C. B. Eom, Alex Gurevich

Physics Faculty Publications

We investigated the nonlinear Meissner effect (NLME) in Nb3Sn thin-film coplanar resonators by measuring the resonance frequency as a function of a parallel magnetic field at different temperatures. We used low rf power probing in films thinner than the London penetration depth λ(B) to significantly increase the field onset of vortex penetration and measure the NLME under equilibrium conditions. Contrary to the conventional quadratic increase of λ(B) with B expected in s-wave superconductors, we observed a nearly linear increase of the penetration depth with B. We concluded that this behavior of λ(B) is due to weak linked grain …


Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2022

Transversity Parton Distribution Function Of The Nucleon Using The Pseudodistribution Approach, Colin Egerer, Christos Kallidonis, Joseph Karpie, Nikhil Karthik, Christopher J. Monahan, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, Eloy Romero, Raza Sabbir Sufian, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

We present a determination of the nonsinglet transversity parton distribution function (PDF) of the nucleon, normalized with respect to the tensor charge at μ2 ¼ 2 GeV2 from lattice quantum chromodynamics. We apply the pseudodistribution approach, using a gauge ensemble with a lattice spacing of 0.094 fm and the light quark mass tuned to a pion mass of 358 MeV. We extract the transversity PDF from the analysis of the short-distance behavior of the Ioffe-time pseudodistribution using the leading-twist nextto-leading order (NLO) matching coefficients calculated for transversity. We reconstruct the x-dependence of the transversity PDF through an expansion in a …


Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al. Jan 2022

Form Factors And Two-Photon Exchange In High-Energy Elastic Electron-Proton Scattering, M. E. Christy, T. Gautam, L. Ou, S.L. Allison, D. Bulumulla, F. Hauenstein, C. Hyde, K. Park, M.N.H. Rashad, J. Zhang, Y. X. Zhao, P. Zhu, Et Al.

Physics Faculty Publications

We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q2) up to 15.75  (GeV/c)2. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q2 and double the range over which a longitudinal or transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q2 and attributed to hard two-photon exchange (TPE) effects, extending to 8 (GeV/c)2 the range of Q2 for which a discrepancy …


Measurement Of Charged-Pion Production In Deep-Inelastic Scattering Off Nuclei With The Clas Detector, Clas Collaboration, S. Morán, R. Dupre, H. Hakobyan, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Sebastian Kuhn, Pushpa Pandey, Jiwan Poudel, Yelena Prok, Lawrence B. Weinstein, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al. Jan 2022

Measurement Of Charged-Pion Production In Deep-Inelastic Scattering Off Nuclei With The Clas Detector, Clas Collaboration, S. Morán, R. Dupre, H. Hakobyan, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, Florian Hauenstein, Sebastian Kuhn, Pushpa Pandey, Jiwan Poudel, Yelena Prok, Lawrence B. Weinstein, N. Zachariou, J. Zhang, Z. W. Zhao, Et Al.

Physics Faculty Publications

Background: Energetic quarks in nuclear deep-inelastic scattering propagate through the nuclear medium. Processes that are believed to occur inside nuclei include quark energy loss through medium-stimulated gluon bremsstrahlung and intranuclear interactions of forming hadrons. More data are required to gain a more complete understanding of these effects.

Purpose: To test the theoretical models of parton transport and hadron formation, we compared their predictions for the nuclear and kinematic dependence of pion production in nuclei.

Methods: We have measured charged-pion production in semi-inclusive deep-inelastic scattering off D, C, Fe, and Pb using the CLAS detector and the CEBAF 5.014-GeV electron beam. …


Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato Jan 2022

Positivity And Renormalization Of Parton Densities, John Collins, Ted C. Rogers, Nobuo Sato

Physics Faculty Publications

There have been recent debates about whether MS parton densities exactly obey positivity bounds (including the Soffer bound) and whether the bounds should be applied as a constraint on global fits to parton densities and on nonperturbative calculations. A recent paper [Candido et al., Can MS parton distributions be negative?, J. High Energy Phys. 11 (2020) 129] appears to provide a proof of positivity in contradiction with earlier work by other authors. We examine their derivation and find that its primary failure is in the apparently uncontroversial statement that bare parton density (or distribution) function (pdfs) are always …