Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elementary Particles and Fields and String Theory

Series

2020

Articles 1 - 28 of 28

Full-Text Articles in Physics

Published Research Documents In Nuclear And High Energy Physics From 1996-2019: A Bibliometric Analysis Of Leading Countries In Comparison With India, Ishwar Dutt Sharma Dr Dec 2020

Published Research Documents In Nuclear And High Energy Physics From 1996-2019: A Bibliometric Analysis Of Leading Countries In Comparison With India, Ishwar Dutt Sharma Dr

Library Philosophy and Practice (e-journal)

A bibliometric analysis of scientific research production of the top five most productive countries in comparison with India in nuclear and high energy physics is presented during the period 1996-2019 using Scopus-linked SCImago electronic database. To validate the present study, some selected bibliometric indicators such as published documents, their citations and citations per document has been studied. In total, 769180 research documents were published worldwide in journal, conference proceedings and in book series. United States (16.47%), Germany(8.64%), Japan (6.65%), China (6.41%) and Russian Federation (5.89%) were the top most productive countries rankwise, whereas India ranked 10th with 21157 research …


Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, D. Androic, David S. Armstrong, Et Al. Sep 2020

Precision Measurement Of The Beam-Normal Single-Spin Asymmetry In Forward-Angle Elastic Electron-Proton Scattering, D. Androic, David S. Armstrong, Et Al.

Arts & Sciences Articles

A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles …


Tz' Production At Hadron Colliders, Marco Guzzi, Nikolaos Kidonakis May 2020

Tz' Production At Hadron Colliders, Marco Guzzi, Nikolaos Kidonakis

Faculty and Research Publications

We study the production of a single top quark in association with a heavy extra Z' at hadron colliders in new physics models with and without flavor-changing neutral-current (FCNC) couplings. We use QCD soft-gluon resummation and threshold expansions to calculate higher-order corrections for the total cross section and transverse momentum distributions for t Z' production. The impact of the uncertainties due to the structure of the proton and scale dependence is also analyzed.


Consistency Checks For Two-Body Finite-Volume Matrix Elements. Ii. Perturbative Systems, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura May 2020

Consistency Checks For Two-Body Finite-Volume Matrix Elements. Ii. Perturbative Systems, Raúl A. Briceño, Maxwell T. Hansen, Andrew W. Jackura

Physics Faculty Publications

Using the general formalism presented in [Phys. Rev. D 94, 013008 (2016); Phys. Rev. D 100, 034511 (2019)], we study the finite-volume effects for the 2 þ J → 2 matrix element of an external current coupled to a two-particle state of identical scalars with perturbative interactions. Working in a finite cubic volume with periodicity L, we derive a 1=L expansion of the matrix element through O(1=L5) and find that it is governed by two universal current-dependent parameters, the scalar charge and the threshold two particle form factor. We confirm the result through a numerical study of the …


A Consistent Classical Relativistic Model Of A Finite Size Particle, Mira Varma May 2020

A Consistent Classical Relativistic Model Of A Finite Size Particle, Mira Varma

Honors Scholar Theses

An exactly solvable classical field theoretical model of a stable particle of finite size is studied. The model consists of a "swarm" of matter particles bound by an interplay of three static fields: one electromagnetic field, a massive scalar field, and a massive vector field. The internal forces due to the three fields balance each other to form a stable particle. The model parameters can be chosen such that the described particle has the mass and radius of a proton. The model qualitatively reproduces the pressure distribution inside a proton in agreement with recent experimental findings.


Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell Apr 2020

Magnetic Forces In The Absence Of A Classical Magnetic Field, Ismael L. Paiva, Yakir Aharonov, Jeff Tollaksen, Mordecai Waegell

Mathematics, Physics, and Computer Science Faculty Articles and Research

It is shown that, in some cases, the effect of discrete distributions of flux lines in quantum mechanics can be associated with the effect of continuous distributions of magnetic fields with special symmetries. In particular, flux lines with an arbitrary value of magnetic flux can be used to create energetic barriers, which can be used to confine quantum systems in specially designed configurations. This generalizes a previous work where such energy barriers arose from flux lines with half-integer fluxons. Furthermore, it is shown how the Landau levels can be obtained from a two-dimensional grid of flux lines. These results suggest …


The Clas12 Software Framework And Event Reconstruction, V. Ziegler, N. A. Baltzell, F. Bossù, D. S. Carman, P. Chatanon, M. Contalbrigo, J. Newton, M. Ungaro Apr 2020

The Clas12 Software Framework And Event Reconstruction, V. Ziegler, N. A. Baltzell, F. Bossù, D. S. Carman, P. Chatanon, M. Contalbrigo, J. Newton, M. Ungaro

Physics Faculty Publications

We describe offline event reconstruction for the CEBAF Large Acceptance Spectrometer at 12 GeV (CLAS12), including an overview of the offline reconstruction framework and software tools, a description of the algorithms developed for the individual detector subsystems, and the overall approach for charged and neutral particle identification. We also present the scheme for data processing and the code management procedures.


Heavy Quark Expansion For Heavy-Light Light-Cone Operators, Shuai Zhao Apr 2020

Heavy Quark Expansion For Heavy-Light Light-Cone Operators, Shuai Zhao

Physics Faculty Publications

We generalize the celebrated heavy quark expansion to nonlocal QCD operators. By taking nonlocal heavy-light current on the light-cone as an example, we confirm that the collinear singularities are common between QCD operator and the corresponding operator in heavy quark effective theory (HQET), at the leading power of 1/M expansion. Based on a perturbative calculation in operator form at one-loop level, a factorization formula linking QCD and HQET operators is investigated and the matching coefficient is determined. The matching between QCD and HQET light-cone distribution amplitudes (LCDAs) as well as other momentum distributions of hadron can be derived as …


Truncations Of W (Infinity) Algebras, Mohammed Akram Fellah Mar 2020

Truncations Of W (Infinity) Algebras, Mohammed Akram Fellah

Department of Physics Faculty Publications

We introduce a new class of Vertex Operator Algebras Y+ and their duals, which generalize the standard W-algebras WN of type sl(N). These algebras can be defined in terms of junctions of boundary conditions and interfaces in the GL-twisted N = 4 Super Yang Mills gauge theory.

The aim of these technical calculations is to find the relation of these ortho-symplectic Y-algebras to truncations of even W\infinity.


Measurement Of Single-Diffractive Dijet Production In Proton–Proton Collisions At √S = 8 Tev With The Cms And Totem Experiments, Cms Collaboration, Ekaterina Avdeeva, Kenneth A. Bloom, Daniel Claes, Caleb Fangmeier, Frank Golf, Rebeca Gonzalez Suarez, Rami Kamalieddin, Ilya Kravchenko Dr., Jose Monroy, J. Siado, Gregory Snow, B. Stieger Jan 2020

Measurement Of Single-Diffractive Dijet Production In Proton–Proton Collisions At √S = 8 Tev With The Cms And Totem Experiments, Cms Collaboration, Ekaterina Avdeeva, Kenneth A. Bloom, Daniel Claes, Caleb Fangmeier, Frank Golf, Rebeca Gonzalez Suarez, Rami Kamalieddin, Ilya Kravchenko Dr., Jose Monroy, J. Siado, Gregory Snow, B. Stieger

Kenneth Bloom Publications

Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes pp → pX and pp → Xp, i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton–proton collisions at √s = 8 TeV during a dedicated run with …


Attosecond-Pulse Metrology Based On High-Order Harmonic Generation, T. S. Sarantseva, M. V. Frolov, N. L. Manakov, A. A. Silaev, A. A. Romanov, N. V. Vvedenskii, Anthony F. Starace Jan 2020

Attosecond-Pulse Metrology Based On High-Order Harmonic Generation, T. S. Sarantseva, M. V. Frolov, N. L. Manakov, A. A. Silaev, A. A. Romanov, N. V. Vvedenskii, Anthony F. Starace

Anthony F. Starace Publications

An all-optical method to retrieve the temporal intensity profile of an extreme ultraviolet (XUV) attosecond pulse is proposed based on XUV-assisted high-order harmonic generation (HHG) by an intense infrared (IR) pulse. For a harmonic located on the XUV-induced high-energy plateau (beyond the IR HHG plateau), the measured harmonic yield as a function of the time delay between the XUV and IR pulses is shown to accurately map the temporal intensity profile of the XUV pulse. Single-color and two-color orthogonal, linearly polarized IR pulses are used to demonstrate the method.


First Measurement Of Direct Photoproduction Of The A2(1320)⁰ Meson On The Proton, K.P. Adhikari, M. J. Amaryan, D. Bullumulla, F. Hauenstein, M. Khachatryan, Y. Prok, Et Al., Clas Collaboration Jan 2020

First Measurement Of Direct Photoproduction Of The A2(1320)⁰ Meson On The Proton, K.P. Adhikari, M. J. Amaryan, D. Bullumulla, F. Hauenstein, M. Khachatryan, Y. Prok, Et Al., Clas Collaboration

Physics Faculty Publications

We present the first measurement of the reaction 𝛾p -> a₂(1320)⁰ p in the photon energy range 3.5-5.5 GeV and four-momentum transfer squared 0.2 < -t < 2.0 GeV2. Data were collected with the CEBAF Large Acceptance Spectrometer detector at the Thomas Jefferson National Accelerator Facility. The a2resonance was detected by measuring the reaction 𝛾p → π0ηp and reconstructing the π0η invariant mass. The most prominent feature of the differential cross section is a dip at -t ≈ 0.55 GeV2. This can be described in the framework of Regge phenomenology, where the exchange degeneracy hypothesis …


Minimizing The Duration Of Isolated Attosecond Pulses, Dian Peng, Anthony F. Starace, Hua-Chieh Shao, Jean Marcel Ngoko Djiokap Jan 2020

Minimizing The Duration Of Isolated Attosecond Pulses, Dian Peng, Anthony F. Starace, Hua-Chieh Shao, Jean Marcel Ngoko Djiokap

Anthony F. Starace Publications

We investigate theoretically how the duration of an isolated attosecond pulse (IAP) can be minimized by carefully selecting frequencies of high-order harmonic generation (HHG) spectra produced by ultrashort driving laser pulses. Based on numerical calculations of HHG by solving the time-dependent Schrödinger equation for a single H atom, we provide three strategies for generating shorter IAPs. First, when the high-frequency region of an HHG plateau is selected one should use frequencies below the cutoff. Second, for a wide HHG plateau the low-frequency region can produce shorter IAPs than the high-frequency region. Third, we propose a method of producing IAPs with …


Origin Of The Multiphoton-Regime Harmonic-Generation Plateau Structure, Jean Marcel Ngoko Djiokap, Anthony F. Starace Jan 2020

Origin Of The Multiphoton-Regime Harmonic-Generation Plateau Structure, Jean Marcel Ngoko Djiokap, Anthony F. Starace

Anthony F. Starace Publications

A physical interpretation is provided for the formation of the multiphoton-regime plateau feature in the spectra of nonlinear and correlated process of high-order harmonic generation (HHG) of two-active-electron atoms interacting with an intense linearly polarized laser field [Phys. Rev. A 88, 053412 (2013) for beryllium]. While in the strong-field tunneling regime the plateau feature is well known to be due to rescattering effects of the freed electron, its counterpart in the multiphoton regime is due to atomic resonance effects involving both singly excited states and doubly excited states. Here, we propose a strategy to uncover which kind of these states …


High-Luminosity Large Hadron Collider (Hl-Lhc): Technical Design Report, O. Aberle, C. Adorisio, A. Adraktas, M. Ady, J. Albertone, L. Alberty, M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira, P. Alvarez-Lopez, G. Ambrosio, P. Andreu Munoz, M. Anerella, D. Angal-Kalinin, F. Antoniou, G. Apollinari, A. Apollonio, R. Appleby, I. Béjar Alonso, Jean Delayen, I. Zurbano Fernandez, Et Al., I. Béjar Alonso (Ed.), O. Brüning (Ed.), P. Fessia (Ed.), M. Lamont (Ed.), L. Rossi (Ed.), L. Tavian (Ed.), M. Zerlauth (Ed.) Jan 2020

High-Luminosity Large Hadron Collider (Hl-Lhc): Technical Design Report, O. Aberle, C. Adorisio, A. Adraktas, M. Ady, J. Albertone, L. Alberty, M. Alcaide Leon, A. Alekou, D. Alesini, B. Almeida Ferreira, P. Alvarez-Lopez, G. Ambrosio, P. Andreu Munoz, M. Anerella, D. Angal-Kalinin, F. Antoniou, G. Apollinari, A. Apollonio, R. Appleby, I. Béjar Alonso, Jean Delayen, I. Zurbano Fernandez, Et Al., I. Béjar Alonso (Ed.), O. Brüning (Ed.), P. Fessia (Ed.), M. Lamont (Ed.), L. Rossi (Ed.), L. Tavian (Ed.), M. Zerlauth (Ed.)

Physics Faculty Publications

The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 9000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its instantaneous luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total number of collisions) by a factor ten. …


Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa Jan 2020

Quasielastic Lepton Scattering And Back-To-Back Nucleons In The Short-Time Approximation, S. Pastore, J. Carlson, S. Gandolfi, R. Schiavilla, R. B. Wiringa

Physics Faculty Publications

Understanding quasielastic electron and neutrino scattering from nuclei has taken on new urgency with current and planned neutrino oscillation experiments, and with electron scattering experiments measuring specific final states, such as those involving nucleon pairs in "back-to-back" configurations. Accurate many-body methods are available for calculating the response of light (A <= 12) nuclei to electromagnetic and weak probes, but they are computationally intensive and only applicable to the inclusive response. In the present work we introduce a novel approach, based on realistic models of nuclear interactions and currents, to evaluate the short-time (high-energy) inclusive and exclusive response of nuclei. The approach accounts reliably for crucial two-nucleon dynamics, including correlations and currents, and provides information on back-to-back nucleons observed in electron and neutrino scattering experiments. We demonstrate that in the quasielastic regime and at moderate momentum transfers both initial- and final-state correlations and two-nucleon currents are important for a quantitatively successful description of the inclusive response and final-state nucleons. Finally, the approach can be extended to include relativistic-kinematical and dynamical-effects, at least approximately in the two-nucleon sector, and to describe the response in the resonance-excitation region.


Gluon Pseudo-Distributions At Short Distances: Forward Case, Ian Balitsky, Wayne Morris, Anatoly Radyushkin Jan 2020

Gluon Pseudo-Distributions At Short Distances: Forward Case, Ian Balitsky, Wayne Morris, Anatoly Radyushkin

Physics Faculty Publications

We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution functions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions and identify those that contain the invariant amplitude determining the gluon PDF in the light-cone z2 → 0 limit. One-loop calculations have been performed in the coordinate representation and in an explicitly gauge-invariant form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of the ln⁡(−z2)-dependence at short distances z2. The UV terms cancel in the reduced Ioffe-time distribution (ITD), …


Klf Analysis Report: Meson Spectroscopy Simulation Studies, Shankar Adhikari, Moskov Amaryan Jan 2020

Klf Analysis Report: Meson Spectroscopy Simulation Studies, Shankar Adhikari, Moskov Amaryan

Physics Faculty Publications

This analysis report is written as a supplemental for the strange meson spectroscopy part of the KLF proposal submitted to the JLab PAC48.


Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi Jan 2020

Developing A High Resolution Zdc For The Eic, J. H. Lee, T. Sako, K. Tanida, M. Murray, Q. Wang, N. Nickel, Y. Yamazaki, Y. Itow, H. Menjo, T. Shibata, C. E. Hyde, V. Baturin, Y. Goto, I. Nakagawa, R. Seidl, K. Kawade, A. Deshpande, B. Schmookler, K. Nakano, T. Chujo, Y. Miyachi

Physics Faculty Publications

The Electron Ion Collider offers the opportunity to make un-paralleled multidimen- sional measurements of the spin structure of the proton and nuclei, as well as a study of the onset of partonic saturation at small Bjorken-x [1]. An important requirement of the physics program is the tagging of spectator neutrons and the identification of forward photons. We propose to design and build a Zero Degree Calorimeter, or ZDC, to measure photons and neutrons with excellent energy & position resolution.


Beam-Target Helicity Asymmetry E In K⁺Σ⁻ Photoproduction On The Neutron, N. Zachariou, K. P. Adhikari, M. Khachatryan, M. Mayer, Y. Prok, Et Al., Clas Collaboration Jan 2020

Beam-Target Helicity Asymmetry E In K⁺Σ⁻ Photoproduction On The Neutron, N. Zachariou, K. P. Adhikari, M. Khachatryan, M. Mayer, Y. Prok, Et Al., Clas Collaboration

Physics Faculty Publications

We report a measurement of a beam-target double-polarisation observable (E) for the 𝛾n(p) → K+Σ-(p) reaction. The data were obtained impinging the circularly-polarised energy-tagged photon beam of Hall B at Jefferson Lab on a longitudinally-polarised frozen-spin hydrogen deuteride (HD) nuclear target. The E observable for an effective neutron target was determined for centre-of-mass energies 1.70 ≤ W ≤ 2.30 GeV, with reaction products detected over a wide angular acceptance by the CLAS spectrometer. These new double-polarisation data give unique constraints on the strange decays of excited neutron states. Inclusion of the new …


Thermal Emittance And Lifetime Of Alkali-Antimonide Photocathodes Grown On Gaas And Molybdenum Substrates Evaluated In A -300 Kv Dc Photogun, Y. Wang, M. A. Mamun, P. Adderley, B. Bullard, J. Grames, J. Hansknecht, C. Hernandez-Garcia, G. A. Krafft, G. Palacios-Serrano, M. Poelker, M. L. Stutzman, R. Suleiman, M. Tiefenback, S. Wijethunga, J. Yoskowitz, S. Zhang Jan 2020

Thermal Emittance And Lifetime Of Alkali-Antimonide Photocathodes Grown On Gaas And Molybdenum Substrates Evaluated In A -300 Kv Dc Photogun, Y. Wang, M. A. Mamun, P. Adderley, B. Bullard, J. Grames, J. Hansknecht, C. Hernandez-Garcia, G. A. Krafft, G. Palacios-Serrano, M. Poelker, M. L. Stutzman, R. Suleiman, M. Tiefenback, S. Wijethunga, J. Yoskowitz, S. Zhang

Physics Faculty Publications

CsxKySb photocathodes grown on GaAs and molybdenum substrates were evaluated using a –300 kV dc high voltage photogun and diagnostic beam line. Photocathodes grown on GaAs substrates, with varying antimony layer thickness (estimated range from < 20 nm to > 1 um), yielded similar thermal emittance per rms laser spot size values (~0.4 mm mrad / mm) but very different operating lifetime. Similar thermal emittance was obtained for a photocathode grown on a molybdenum substrate but with markedly improved lifetime. For this photocathode, no decay in quantum efficiency was measured at 4.5 mA average current and with peak current 0.55 A …


Extraction Of Beam-Spin Asymmetries From The Hard Exclusive Π⁺ Channel Off Protons In A Wide Range Of Kinematics, M.J. Amaryan, D. Bulumulla, M. Hattawy, M. Khachatryan, S.E. Kuhn, Z. W. Zhao, Et Al., The Clas Collaboration Jan 2020

Extraction Of Beam-Spin Asymmetries From The Hard Exclusive Π⁺ Channel Off Protons In A Wide Range Of Kinematics, M.J. Amaryan, D. Bulumulla, M. Hattawy, M. Khachatryan, S.E. Kuhn, Z. W. Zhao, Et Al., The Clas Collaboration

Physics Faculty Publications

We have measured beam-spin asymmetries to extract the sinϕ moment ALUsinϕ from the hard exclusive ep → e'nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The ALUsinϕ moment has been measured up to 6.6  GeV2 in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where …


Probing The Deuteron At Very Large Internal Momenta, C. Yero, D. Abrams, Z Ahmed, F. Hauenstein, S.A. Wood, J. Zhang, Et Al., Hall C. Collaboration Jan 2020

Probing The Deuteron At Very Large Internal Momenta, C. Yero, D. Abrams, Z Ahmed, F. Hauenstein, S.A. Wood, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

We measure 2H(e,e′p)n cross sections at 4-momentum transfers of Q2 = 4.5 ± 0.5   (GeV/c)2 over a range of neutron recoil momenta pr, reaching up to ∼1.0  GeV/c. We obtain data at fixed neutron recoil angles θnq = 35°, 45°, and 75° with respect to the 3-momentum transfer q. The new data agree well with previous data, which reached pr ∼ 500  MeV/c. At θnq = 35° and 45°, final state interactions, meson exchange currents, and isobar currents are suppressed and the plane wave impulse approximation provides the dominant cross section contribution. …


A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache Jan 2020

A Short Remark On Vortex As Fluid Particle From Neutrosophic Logic Perspective, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In a previous paper in this journal (IJNS), it is mentioned about a possible approach to re-describe QED without renormalization route. As it is known that in literature, there are some attempts to reconcile vortex-based fluid dynamics and particle dynamics. Some attempts are not quite as fruitful as others. As a follow up to previous paper, the present paper will discuss two theorems for developing unification theories, and then point out some new proposals including by Simula (2020) on how to derive Maxwell equations in superfluid dynamics setting; this could be a new alternative approach towards “fluidicle” or “vorticle” model …


Long-Range Electroweak Amplitudes Of Single Hadrons From Euclidean Finite-Volume Correlation Functions, Raúl A. Briceño, Zohreh Davoudi, Maxwell T. Hansen, Matthias R. Schindler, Alessandro Baroni Jan 2020

Long-Range Electroweak Amplitudes Of Single Hadrons From Euclidean Finite-Volume Correlation Functions, Raúl A. Briceño, Zohreh Davoudi, Maxwell T. Hansen, Matthias R. Schindler, Alessandro Baroni

Physics Faculty Publications

A relation is presented between single-hadron long-range matrix elements defined in a finite Euclidean spacetime and the corresponding infinite-volume Minkowski amplitudes. This relation is valid in the kinematic region where any number of two-hadron states can simultaneously go on shell, so that the effects of strongly coupled intermediate channels are included. These channels can consist of nonidentical particles with arbitrary intrinsic spins. The result accommodates general Lorentz structures as well as nonzero momentum transfer for the two external currents inserted between the single-hadron states. The formalism, therefore, generalizes the work by Christ et al. [Phys. Rev. D 91, 114510 …


Dynamic Pair-Breaking Current, Critical Superfluid Velocity, And Nonlinear Electromagnetic Response Of Nonequilibrium Superconductors, Ahmad Sheikhzada, Alex Gurevich Jan 2020

Dynamic Pair-Breaking Current, Critical Superfluid Velocity, And Nonlinear Electromagnetic Response Of Nonequilibrium Superconductors, Ahmad Sheikhzada, Alex Gurevich

Physics Faculty Publications

We report numerical calculations of a dynamic pair-breaking current density Jd and a critical superfluid velocity vd in a nonequilibrium superconductor carrying a uniform, large-amplitude AC current density J(t)=JasinΩt with Ω well below the gap frequency Ω ≪ Δ0/h. The dependencies Jd(Ω,T) and vd(Ω,T) near the critical temperature Tcwere calculated from either the full time-dependent nonequilibrium equations for a dirty s-wave superconductor or the time-dependent Ginzburg-Landau (TDGL) equations for a gapped superconductor, taking into account the GL relaxation time of the order parameter GL …


Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 < Q2 < 1.0 Gev/C2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu Jan 2020

Measurement Of The Single-Spin Asymmetry A⁰ʸ In Quasi-Elastic ³He↑(E,E'N) Scattering At 0.4 < Q2 < 1.0 Gev/C2, E. Long, Y.W. Zhang, M. Mihovilovic, M. Canan, S. Golge, L. Zhu

Physics Faculty Publications

Due to the lack of free neutron targets, studies of the structure of the neutron are typically made by scattering electrons from either ²H or ³He targets. In order to extract useful neutron information from a ³He target, one must understand how the neutron in a ³He system differs from a free neutron by taking into account nuclear effects such as final state interactions and meson exchange currents. The target single spin asymmetry A⁰ʸ is an ideal probe of such effects, as any deviation from zero indicates effects beyond plane wave impulse approximation. New measurements of the target single spin …


Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich Jan 2020

Double Inclusive Small-X Gluon Production And Their Azimuthal Correlations In A Biased Ensemble, Gary Kapilevich

Publications and Research

We consider double gg → g production in the presence of a bias on the unintegrated gluon distribution of the colliding hadrons or nuclei. Such bias could be due to the selection of configurations with a greater number of gluons or higher mean transverse momentum squared or, more generally, due to a modified spectral shape of the gluon distribution in the hadrons. Hence, we consider reweighted functional averages over the stochastic ensemble of small-x gluons. We evaluate explicitly the double inclusive gluon transverse momentum spectrum in high-energy collisions, and their azimuthal correlations, for a few simple examples of biases.